【BZOJ2876】【NOI2012】骑行川藏(数学,二分答案)

题面

BZOJ

题解

我们有一个很有趣的思路。

首先我们给每条边随意的赋一个初值。

当然了,这个初值不会比这条边的风速小。

那么,我们可以先计算一下当前所需要的总能量。

剩下的能量我们分成若干等份。

每次从所有的边中,选择一个加了这一份能量后,时间减少最多的那条边,让他提速。

直到我们所有的能量都分配完,此时答案一定最优。

所以,可以简化一下题意。

在\(\sum ks(v'-v)^2=E_U\)的情况下,最小化\(\sum \frac{s}{v}\)

然后剩下的部分我就去看看学长写的吧(因为我也不懂)

MashiroSky's Blog

主要是不知道为什么梯度向量就平行了

补充一下自己的几点理解:

首先能量和等于\(E_U\)是一个函数,我们可以把它先在空间中表示出来。

然后最小化的值我们也可以看成一个函数,那么我们类似于地理中的等高线,

把所有等值的点的位置一圈一圈的全部向外拓展,当它第一次与能量构成的函数相交时,

并且这个交点一定是切点,此时取到的就是最小值了。

梯度向量由偏向量构成,其中偏向量的每一维分别对应这这个函数在每一维上的导数。

也就是把每一维分别看做主元,其他的都看作常量后求导。

也许梯度向量相等可以看做为在切点处,任何一维的增长量都相等?

假设我们默认梯度向量平行

那么,就有\((v_1,v_2,v_3....,v_n)=\lambda (v'_1,v'_2,...,v'_n)\)

我们可以二分这个\(\lambda\),然后求解出所有的速度。

求解速度的时候等价于解方程\(2\lambda Kv^2(v-v')=-1\)

所有已知量都挪到右边,假设算完后的结果是\(c\)

那么就是\(v^3-v'v^2=c\)

我们找左边的零点,发现显然只有两个零点\(v'\)和\(0\)

并且我们最终的速度一定不会小于\(v'\),解方程的时候我们可以二分,

解的下界是\(max(0,v')\)

差不多就这些了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 11111
#define eps 1e-13
int n;
double Eu,S[MAX],K[MAX],V[MAX],v[MAX],ans;
bool check(double lam)
{
double ret=0;
for(int i=1;i<=n;++i)
{
double l=max(0.0,V[i]),r=1e9,c=-1/(2*lam*K[i]);v[i]=l;
while(l+eps<=r)
{
double mid=(l+r)/2;
if(mid*mid*(mid-V[i])<c)l=mid;
else r=mid;
}
v[i]=l;ret+=K[i]*S[i]*(V[i]-v[i])*(V[i]-v[i]);
}
return ret<=Eu;
}
int main()
{
scanf("%d%lf",&n,&Eu);
for(int i=1;i<=n;++i)scanf("%lf%lf%lf",&S[i],&K[i],&V[i]);
double l=-1e9,r=0,ret;
while(l+eps<=r)
{
double mid=(l+r)/2;
if(check(mid))l=mid,ret=mid;
else r=mid;
}
check(ret);
for(int i=1;i<=n;++i)ans+=S[i]/v[i];
printf("%.10lf\n",ans);
return 0;
}

【BZOJ2876】【NOI2012】骑行川藏(数学,二分答案)的更多相关文章

  1. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  2. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  3. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  4. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  5. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  6. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  7. [NOI2012] 骑行川藏 | 求导 二分

    一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...

  8. 【bzoj2876】 Noi2012—骑行川藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2876 (题目链接) 题意 在满足约束条件$${\sum_{i=1}^ns_ik_i(v_i-v_i' ...

  9. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  10. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

随机推荐

  1. bzoj4998 星球联盟

    bzoj4998 星球联盟 原题链接 题解 先按照输入顺序建一棵树(森林),然后用一个并查集维护联盟的关系,对于不是树上的边\(a-b\),就把\(a-lca(a,b),b-lca(a,b)\)全部合 ...

  2. Android线程管理(三)——Thread类的内部原理、休眠及唤醒

    线程通信.ActivityThread及Thread类是理解Android线程管理的关键. 线程,作为CPU调度资源的基本单位,在Android等针对嵌入式设备的操作系统中,有着非常重要和基础的作用. ...

  3. asp.net core 2.2 根据PC端和移动端自动显示不同视图而不改变url地址

    1.添加HttpRequest扩展方法 public static class RequestExtensions { //regex from http://detectmobilebrowsers ...

  4. Appium+python 自动发送邮件(1)(转)

    (原文:https://www.cnblogs.com/fancy0158/p/10056091.html) SMTP:简单传输协议,实在Internet上传输Email的事实标准. Python的s ...

  5. Openwrt能用的花生壳客户端

    http://files.cnblogs.com/mazhiyong/phddns.zip 使用教程可参考官方文档 http://service.oray.com/question/116.html

  6. 二、Django快速安装

    一.安装Python 作为一个Python Web框架,Django依赖Python.从Django适用于哪些版本的Python可以获取更多信息.较新版本的Python内置一个轻量级的数据库SQLit ...

  7. 教你thinkphp5怎么配置二级域名

    有些项目要将移动端和PC端分离开来,比如访问xxx.com,展示的是PC端的页面.而访问m.xxx.com,展示的是移动端的页面.thinkphp源码需要多多学习,这里记录一下知识点,顺便分享给需要的 ...

  8. dalao自动报表邮件2.0

    经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...

  9. FPGA选型

    工欲善其事必先利其器,开发FPGA的第一步,当然是选择一片符合你设计需求的芯片. 但是芯片种类那么多,老板又要你越省越好,硬件工程师也天天问你到底该用哪块芯片,怎么办? 今天正好可以跟大家聊聊这些问题 ...

  10. Coin Game

    Problem Description After hh has learned how to play Nim game, he begins to try another coin game wh ...