【BZOJ2876】【NOI2012】骑行川藏(数学,二分答案)

题面

BZOJ

题解

我们有一个很有趣的思路。

首先我们给每条边随意的赋一个初值。

当然了,这个初值不会比这条边的风速小。

那么,我们可以先计算一下当前所需要的总能量。

剩下的能量我们分成若干等份。

每次从所有的边中,选择一个加了这一份能量后,时间减少最多的那条边,让他提速。

直到我们所有的能量都分配完,此时答案一定最优。

所以,可以简化一下题意。

在\(\sum ks(v'-v)^2=E_U\)的情况下,最小化\(\sum \frac{s}{v}\)

然后剩下的部分我就去看看学长写的吧(因为我也不懂)

MashiroSky's Blog

主要是不知道为什么梯度向量就平行了

补充一下自己的几点理解:

首先能量和等于\(E_U\)是一个函数,我们可以把它先在空间中表示出来。

然后最小化的值我们也可以看成一个函数,那么我们类似于地理中的等高线,

把所有等值的点的位置一圈一圈的全部向外拓展,当它第一次与能量构成的函数相交时,

并且这个交点一定是切点,此时取到的就是最小值了。

梯度向量由偏向量构成,其中偏向量的每一维分别对应这这个函数在每一维上的导数。

也就是把每一维分别看做主元,其他的都看作常量后求导。

也许梯度向量相等可以看做为在切点处,任何一维的增长量都相等?

假设我们默认梯度向量平行

那么,就有\((v_1,v_2,v_3....,v_n)=\lambda (v'_1,v'_2,...,v'_n)\)

我们可以二分这个\(\lambda\),然后求解出所有的速度。

求解速度的时候等价于解方程\(2\lambda Kv^2(v-v')=-1\)

所有已知量都挪到右边,假设算完后的结果是\(c\)

那么就是\(v^3-v'v^2=c\)

我们找左边的零点,发现显然只有两个零点\(v'\)和\(0\)

并且我们最终的速度一定不会小于\(v'\),解方程的时候我们可以二分,

解的下界是\(max(0,v')\)

差不多就这些了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 11111
#define eps 1e-13
int n;
double Eu,S[MAX],K[MAX],V[MAX],v[MAX],ans;
bool check(double lam)
{
double ret=0;
for(int i=1;i<=n;++i)
{
double l=max(0.0,V[i]),r=1e9,c=-1/(2*lam*K[i]);v[i]=l;
while(l+eps<=r)
{
double mid=(l+r)/2;
if(mid*mid*(mid-V[i])<c)l=mid;
else r=mid;
}
v[i]=l;ret+=K[i]*S[i]*(V[i]-v[i])*(V[i]-v[i]);
}
return ret<=Eu;
}
int main()
{
scanf("%d%lf",&n,&Eu);
for(int i=1;i<=n;++i)scanf("%lf%lf%lf",&S[i],&K[i],&V[i]);
double l=-1e9,r=0,ret;
while(l+eps<=r)
{
double mid=(l+r)/2;
if(check(mid))l=mid,ret=mid;
else r=mid;
}
check(ret);
for(int i=1;i<=n;++i)ans+=S[i]/v[i];
printf("%.10lf\n",ans);
return 0;
}

【BZOJ2876】【NOI2012】骑行川藏(数学,二分答案)的更多相关文章

  1. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  2. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  3. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  4. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  5. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  6. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  7. [NOI2012] 骑行川藏 | 求导 二分

    一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...

  8. 【bzoj2876】 Noi2012—骑行川藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2876 (题目链接) 题意 在满足约束条件$${\sum_{i=1}^ns_ik_i(v_i-v_i' ...

  9. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  10. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

随机推荐

  1. rpmforge

    Could not retrieve mirrorlist http://mirrorlist.repoforge.org/el6/mirrors-rpmforge error was : PYCUR ...

  2. 搜索引擎ElasticSearch系列(三): ElasticSearch2.4.4 bigdesk插件安装

    一:ElasticSearch bigdesk插件简介 bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看es集群的各种状态,如:cpu.内存使用情况,索引数据.搜索情况, ...

  3. python基础数据类型3

    python_day_5 今日大纲: 1. dict 用大括号{} 括起来. 内部使用key:value的形式来保存数据 {'jay':'周杰伦', "jj":'林俊杰'} 注意: ...

  4. leetcode- 将有序数组转换为二叉搜索树(java)

    将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0, ...

  5. 7个Node.js的Web框架

    NodeJS也就是Node,是众所周知的使用javascript构建Web应用框架,它启动一个服务器非常简单,如下: var http = require('http'); http.createSe ...

  6. v-for 指令

    JS部分: var app = new Vue({ el: "#app", data() { return { list: [1, 2, 3, 4], objList: [ { i ...

  7. 十大经典排序算法总结 (Python)

    作业部落:https://www.zybuluo.com/listenviolet/note/1399285 以上链接是自己在作业部落编辑的排序算法总结- Github: https://github ...

  8. eos合约案例导读

    为了帮助大家熟悉 EOS 智能合约,EOS 官方提供了一个代币(资产)智能合约 Demo -- eosio.token.eosio.token 智能合约目前还不是特别完善,个别功能还没有完成.但这个示 ...

  9. BVT、EVT、DVT、PVT产品开发几个阶段

      EVT EVT(Engineering Verification Test) 工程验证 产品开发初期的设计验证.设计者实现样品时做初期的测试验证,包括 功能和安规测试,一般由 RD(Researc ...

  10. 404 Note Found 现场编程

    目录 组员职责分工 github 的提交日志截图 程序运行截图 程序运行环境 GUI界面 基础功能实现 运行视频 LCG算法 过滤(降权)算法 算法思路 红黑树 附加功能一 背景 实现 附加功能二(迭 ...