UVA11019 Matrix Matcher【hash傻逼题】【AC自动机好题】
题目大意
让你在一个大小为\(n*m\)的矩阵中找大小是\(x*y\)的矩阵的出现次数
思路1:Hash
hash思路及其傻逼
你把一维情况扩展一下
一维是一个bas,那你二维就用两个bas好了
对一个在\((i,j)\)的字符,令他的hash值是\(c_{i,j}*bas1^i*bas2^j\)
然后算出矩阵hash值乘上差量判断就做完了
70ms
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e3 + 10;
const int Mod = 998244353;
const int bas1 = 233333;
const int bas2 = 19260817;
int pow1[N], pow2[N];
int n, m, x, y;
char s[N][N], c[N][N];
int sum[N][N], val;
int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}
int mul(int a, int b) {
return 1ll * a * b % Mod;
}
int sub(int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}
int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
}
void init() {
pow1[0] = pow2[0] = 1;
fu(i, 1, N - 1) pow1[i] = mul(bas1, pow1[i - 1]);
fu(i, 1, N - 1) pow2[i] = mul(bas2, pow2[i - 1]);
}
void getsum() {
fu(i, 1, n)
fu(j, 1, m)
sum[i][j] = add(sub(add(sum[i][j - 1], sum[i - 1][j]), sum[i - 1][j - 1]), mul(s[i][j], mul(pow1[i], pow2[j])));
val = 0;
fu(i, 1, x)
fu(j, 1, y) val = add(val, mul(c[i][j], mul(pow1[i], pow2[j])));
}
void solve() {
Read(n), Read(m);
fu(i, 1, n) scanf("%s", s[i] + 1);
Read(x), Read(y);
fu(i, 1, x) scanf("%s", c[i] + 1);
getsum();
int ans = 0;
fu(i, x, n)
fu(j, y, m)
if (sub(add(sum[i][j], sum[i - x][j - y]), add(sum[i][j - y], sum[i - x][j])) == mul(val, mul(pow1[i - x], pow2[j - y])))
++ans;
Write(ans), putchar('\n');
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
int T; Read(T);
init();
while (T--) solve();
return 0;
}
思路2:AC自动机
用AC自动机来考虑的话这题挺好的
虽然跑600ms
考虑一下把模式串分解变成x个长度是y的串
然后全部塞进AC自动机
然后考虑算出在\(n*m\)的矩阵中有哪些串在哪些位置出现过
这个东西跑一边就可以处理出来
如果有不好处理的细节你就想怎么暴力怎么来
然后我们考虑假如在\((i,j)\)这个位置匹配到了第k行
那么对于左上角在\((i-k,j)\)的矩阵显然是可以匹配第k行的
那么我们就记录一下每个节点是左上角的矩阵最多能匹配多少行就可以了
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e3 + 10;
const int CHARSET_SIZE = 26;
struct Node {
int ch[CHARSET_SIZE], fail;
int id[110];
Node() {}
void clean() {
fu(i, 0, CHARSET_SIZE - 1) ch[i] = 0;
id[0] = fail = 0;
}
} p[N * N];
int n, m, x, y, cnt;
int res[N][N];
char s[N][N], c[N][N];
void init() {
cnt = 1;
p[0].clean(); p[1].clean();
fu(i, 0, CHARSET_SIZE - 1) p[0].ch[i] = 1;
}
void insert(char *c, int id) {
int u = 1;
fu(i, 1, y) {
int tmp = c[i] - 'a';
if (!p[u].ch[tmp])
p[p[u].ch[tmp] = ++cnt].clean();
u = p[u].ch[tmp];
}
p[u].id[++p[u].id[0]] = id;
}
void build_fail() {
static queue<int> q;
q.push(1);
while (q.size()) {
int u = q.front(); q.pop();
fu(i, 0, CHARSET_SIZE - 1) {
int w = p[u].ch[i], v = p[u].fail;
while (!p[v].ch[i]) v = p[v].fail;
v = p[v].ch[i];
if (w) {
p[w].fail = v;
q.push(w);
} else p[u].ch[i] = v;
}
}
}
void trans(char *c, int id) {
int u = 1;
fu(i, 1, m) {
u = p[u].ch[c[i] - 'a'];
fu(j, 1, p[u].id[0]) {
if (id >= p[u].id[j])
res[id - p[u].id[j] + 1][i]++;
}
}
}
void solve() {
init();
Read(n), Read(m);
fu(i, 1, n) scanf("%s", s[i] + 1);
Read(x), Read(y);
fu(i, 1, x) {
scanf("%s", c[i] + 1);
insert(c[i], i);
}
build_fail();
fu(i, 1, n) fu(j, 1, m) res[i][j] = 0;
fu(i, 1, n) trans(s[i], i);
int ans = 0;
fu(i, 1, n)
fu(j, 1, m) if (res[i][j] == x) ++ans;
Write(ans), putchar('\n');
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
int T; Read(T);
while (T--) solve();
return 0;
}
UVA11019 Matrix Matcher【hash傻逼题】【AC自动机好题】的更多相关文章
- HDU 3065 (AC自动机模板题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3065 题目大意:多个模式串,范围是大写字母.匹配串的字符范围是(0~127).问匹配串中含有哪几种模 ...
- 经典算法题每日演练——第八题 AC自动机
原文:经典算法题每日演练--第八题 AC自动机 上一篇我们说了单模式匹配算法KMP,现在我们有需求了,我要检查一篇文章中是否有某些敏感词,这其实就是多模式匹配的问题. 当然你也可以用KMP算法求出,那 ...
- HDU 2222 AC自动机模板题
题目: http://acm.hdu.edu.cn/showproblem.php?pid=2222 AC自动机模板题 我现在对AC自动机的理解还一般,就贴一下我参考学习的两篇博客的链接: http: ...
- HDU 2896 (AC自动机模板题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2896 题目大意:多个模式串.多个匹配串.其中串的字符范围是(0~127).问匹配串中含有哪几个模式串 ...
- HDU 2222(AC自动机模板题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2222 题目大意:多个模式串.问匹配串中含有多少个模式串.注意模式串有重复,所以要累计重复结果. 解题 ...
- HDU3695(AC自动机模板题)
题意:给你n个字符串,再给你一个大的字符串A,问你着n个字符串在正的A和反的A里出现多少个? 其实就是AC自动机模板题啊( ╯□╰ ) 正着query一次再反着query一次就好了 /* gyt Li ...
- hdu2222 KeyWords Search AC自动机入门题
/** 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2222 题意:题意:给定N(N <= 10000)个长度不大于50的模式串,再给定一个长度为L ...
- HDu-2896 病毒侵袭,AC自动机模板题!
病毒侵袭 模板题,不多说了.. 题意:n个不同的字符串分别代表病毒特征,给出m次查询,每次一个字符串(网址),求这个字符串中有几个病毒特征,分别从大到小输出编号,最后输出所有的带病毒网址个数.格式请看 ...
- [Bzoj3940] [AC自动机,USACO 2015 February Gold] Censor [AC自动机模板题]
AC自动机模板题(膜jcvb代码) #include <iostream> #include <algorithm> #include <cstdio> #incl ...
- hdu 2222(AC自动机模版题)
Keywords Search Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others ...
随机推荐
- mysql主从复制,及扩展
一.MySQL简单复制相关概念: 1. mysql复制的意义:Mysql复制是使得mysql完成高性能应用的前提 2. mysql复制的机制: SLAVE端线程: IO thread: 向主服务请求二 ...
- django-生成随机验证码
Python生成随机验证码,需要使用PIL模块. 安装: pip3 install pillow 1 1 pip3 install pillow 基本使用 1.创建图片 from PIL impo ...
- cocos代码研究(9)ProgressTimer类学习笔记
理论部分 ProgressTimer是Node的子类. 该类根据百分比来渲染显示内部的Sprite对象. 变化方向包括径向,水平或者垂直方向. 代码部分 Type getType () const获取 ...
- WebService-WSDL简单介绍
一.什么是WSDL 网络服务描述语言(Web Services Description Language)简称WSDL.作用是通过接口之间的调用实现数据的传输.由于WSDL是基于XML格式的,所以它可 ...
- ruby中的回调方法和钩子方法
在ruby中,当某些特定的事件发生时,将调用回调方法和钩子方法.事件有如下几种: 调用一个不存在的对象方法 类混含一个模块 定义类的子类 给类添加一个实例方法 给对象添加一个单例方法 引用一个不存在的 ...
- 39. Combination Sum(回溯)
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), fin ...
- CCPC-Wannafly Winter Camp Day4 (Div2, onsite)
Replay Dup4: 两轮怎么退火啊? 简单树形dp都不会了,送了那么多罚时 简单题都不想清楚就乱写了,喵喵喵? X: 欧拉怎么回路啊, 不会啊. 还是有没有手误?未思考清楚或者未检查就提交, 导 ...
- Java的初始化与清理
大家都知道,Java是站在巨人的肩上成功的,它是在C&C++的基础上进一步的开发,投入面向对象开发的怀抱.Java吸取了很多以前的教训,加入自己很多独创的方式.在程序语言发展初期,许多C程序员 ...
- linux下如何关闭某个tmux窗口
答:分成两个步骤,如下: 1.列出当前的tmux窗口 jello@jello:~$ tmux ls 1: 1 windows (created Tue Jan 17 09:28:05 2019) [2 ...
- springboot中websoket的使用
知识点:springboot项目中,websoket实时推送技术的介绍与使用 一.双向通信 http协议通信只能由客户端发起请求,服务端返回查询结果,如果我们想定时获取服务端的状态变化,相对 ...