前一篇文章  用 CNTK 搞深度学习 (一) 入门    介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型. 递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种): 不同于普通的神经网络,RNN假设样例之间并不是独立的.例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,…
Computational Network Toolkit (CNTK) 是微软出品的开源深度学习工具包.本文介绍CNTK的基本内容,如何写CNTK的网络定义语言,以及跑通一个简单的例子. 根据微软开发者的描述,CNTK的性能比Caffe,Theano, TensoFlow等主流工具都要强.它支持CPU和GPU模式,所以没有GPU,或者神经网络比较小的实验,直接用CPU版的CNTK跑就行了. 其开源主页在 https://github.com/Microsoft/CNTK  它把神经网络描述成一…
CNTK 搞深度学习 Computational Network Toolkit (CNTK) 是微软出品的开源深度学习工具包.本文介绍CNTK的基本内容,如何写CNTK的网络定义语言,以及跑通一个简单的例子. 根据微软开发者的描述,CNTK的性能比Caffe,Theano, TensoFlow等主流工具都要强.它支持CPU和GPU模式,所以没有GPU,或者神经网络比较小的实验,直接用CPU版的CNTK跑就行了. 其开源主页在 https://github.com/Microsoft/CNTK…
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发…
[源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么 目录 [源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么 0x00 摘要 0x01 背景知识 1.1 分布式体系 1.2 并行任务通信 1.3 MPI 1.4 Open-MPI 1.5 MPI 使用问题 0x02 入口点 2.1 如何运行 2.2 horovodrun 2.3 run_commandline 2.4 非弹性训练 _run_st…
[源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 0x00 摘要 0x01 背景概念 1.1 深度学习框架 1.2 Tensorflow Optimizer 0x02 总体架构 2.1 总体思路 3.2 总体调用关系 0x04 TensorFlow 1.x 4.1 _DistributedOptimizer 4.2 c…
[源码解析] 深度学习分布式训练框架 horovod (12) --- 弹性训练总体架构 目录 [源码解析] 深度学习分布式训练框架 horovod (12) --- 弹性训练总体架构 0x00 摘要 0x01 总述 1.1 问题点 1.1 角色 1.2 容错机制 1.4 监控机制 1.5 官方架构图 0x02 示例代码 2.1 python代码 2.2 脚本执行 0x03 逻辑流程 3.1 逻辑流程 3.2 入口点 3.3 主逻辑 3.4 出错处理 0xEE 个人信息 0xFF 参考 0x00…
[源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator 0x00 摘要 0x01 背景知识 1.1 Kubernetes 1.2 容器作为调度单元 1.3 Kubeflow 1.4 Tensorflow on Kubeflow 1.5 Operator 1.6 TF-Operator 0x02 TensorFlow 分布…
[源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 0x00 摘要 0x01 背景知识 1.1 MPI 1.2 Open-MPI 1.3 MPI Operator 0x02 设计思路 2.1 架构图 2.2 角色 2.3 主要过程 2.4 CRD 的定义 2.5 创建 2.6 终止 0x03 实现 3.1 K8S…
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并行训练 1.1 分布式并行训练的必要 1.2 分布式训练 1.3 训练并行机制 1.3.1 三种机制 1.3.2 如何使用 1.4 数据并行训练 0x02 通信 & 架构 2.1 方法和架构 2.2 异步 vs 同步 0x03 具体架构 3.1 MapReduce 3.2 参数服务器 (PS) 3.…
[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver 目录 [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver 0x00 摘要 0x01 引子 0x02 总体架构 2.1 get_local_interfaces 2.2 _driver_fn 2.3 获取路由接口 2.3.1 probe逻辑 2.3.2 等待函数 0x03 基础网络服务 3.1 继承关系 3.2 network.BasicServic…
[源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 目录 [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 0x00 摘要 0x01 架构图 0x02 统一层 0x03 Horovod OP 类体系 3.1 基类 HorovodOp 3.2 派生类 AllreduceOp 3.3 适配类 MPIAllreduce 3.4 后台线程如何使用 3.4.1 具体collective 操作 3.4.2 调用不同类型的OP 3.4.3 取一个适配层…
[源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 0x00 摘要 0x01 Spark相关知识 1.1 为什么整合 Spark 1.2 Spark 简单架构 1.3 Pyspark 原理 1.3.1 架构修改 1.3.2 Driver端 1.3.3 Executor端 1.3.4 流程 0x02 机器学习 on Spark 2.1 机器学习的特点 2.2 机器学习…
[源码解析] 深度学习分布式训练框架 horovod (10) --- run on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (10) --- run on spark 0x00 摘要 0x01 回顾 1.1 总体序列图 1.2 总体逻辑 1.3 问题 0x02 第四阶段 : 启动 Job 2.1 _launch_job 2.2 获取路由信息 2.3 run_controller 0x03 MPI 实验 3.1 问题点 3.2 名词解释 3.2.1 orterun…
[源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期 目录 [源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期 0x00 摘要 0x01 Worker 是什么 1.1 角色 1.2 职责 1.3 组网机制 1.3.1 通信环 1.3.2 弹性构建 1.3.2.1 Driver 监控 1.3.2.2 Driver 重新构建 0x02 总体生命流程 0x03 配置过程 0x04 启动过程 4.1 总…
[源码解析] 深度学习分布式训练框架 horovod (17) --- 弹性训练之容错 目录 [源码解析] 深度学习分布式训练框架 horovod (17) --- 弹性训练之容错 0x00 摘要 0x01总体思路 0x02 抛出异常 2.1 示例代码 2.2 HorovodInternalError 2.3 HostsUpdatedInterrupt 2.4 总结 0x03 处理异常 3.1 总体逻辑 3.2 恢复 3.3 重置 3.3.1 reset 3.3.2 _HorovodBasics…
[源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 目录 [源码解析] 深度学习分布式训练框架 horovod (21) --- 之如何恢复训练 0x00 摘要 0x01 总论 0x02 Sampler 2.1 PyTorch Distributed Optimizer 2.1.1 定义 2.1.2 问题点 2.2 ElasticSampler 2.2.1 定义 2.2.2 弹性方案 2.2.2.1 常规流程 2.2.2.2 异常处理 2.2.1 如何使用 2…
[源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator 目录 [源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator 0x00 摘要 0x01 背景知识 1.1 已有弹性能力 1.2 mpi-operator 的缺点 0x02 总体架构 2.1 资源创建 2.2 角色 2.3 程序主流程 0x03 入口 3.1 创建 3.2 设置 0x04 TrainingJo…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就能入门. 深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术.书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习. 学习参考: <深度学习入门:基于Python的理论与实现>中文版PDF,…
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 目录 [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 0x00 摘要 0x01 Horovod 简介 0x02 Hovorod 机制概述 2.1 Horovod 机制 0x03 示例代码 3.1 摘要代码 3.2 horovodrun 0x04 运行逻辑 4.1 引入python文件 4.2 初始化 in python 4.2.1 引入SO库 4.2.1.1 SO库 4…
[源码解析] 深度学习分布式训练框架 horovod (6) --- 后台线程架构 目录 [源码解析] 深度学习分布式训练框架 horovod (6) --- 后台线程架构 0x00 摘要 0x01 引子 0x02 设计要点 2.1 问题 2.2 方案 2.3 协调 2.3.1 设计 2.3.2 实现 2.4 Background Thread 2.4.1 设计 2.4.2 实现 0x03 辅助功能 3.1 如何判断是 coordinator 3.2 协调缓存&信息 3.2.1 计算共有 ten…
[源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 0x00 摘要 0x01 总体架构图 0x02 第一阶段 :Horovod 启动 2.1 Driver服务 :SparkDriverService 2.2 启动spark task : _make_spark_thread 2.3 等待 spark task 启动结束 2.3.1 _notify_and_…
[源码解析] 深度学习分布式训练框架 horovod (11) --- on spark --- GLOO 方案 目录 [源码解析] 深度学习分布式训练框架 horovod (11) --- on spark --- GLOO 方案 0x00 摘要 0x01 回顾 1.1 总体序列图 1.2 总体逻辑 0x02 第四阶段 : 启动 Job 2.1 GLOO VS MPI 2.1.1 MPI 麻烦之处 2.1.2 Gloo关键点 2.2 回顾启动过程 2.3 _launch_job 2.3 获取路…
[源码解析] 深度学习分布式训练框架 horovod (13) --- 弹性训练之 Driver 目录 [源码解析] 深度学习分布式训练框架 horovod (13) --- 弹性训练之 Driver 0x00 摘要 0x01 角色 1.1 角色设定 1.2 职责 0x02 调用部分 2.1 _run 2.2 _run_elastic 2.3 gloo_run_elastic 2.4 get_common_interfaces 2.5 获取异地网卡信息 2.6 launch_gloo_elast…
[源码解析] 深度学习分布式训练框架 horovod (14) --- 弹性训练发现节点 & State 目录 [源码解析] 深度学习分布式训练框架 horovod (14) --- 弹性训练发现节点 & State 0x00 摘要 0x01 设计点 0x02 发现机制 2.1 发现脚本 2.2 HostManager 2.2.1 order_available_hosts 2.3 配置 0x03 如何调用 3.1 无限循环线程 3.1.1 定时探寻 3.1.2 通知变化 3.2 如何通知…
[源码解析] 深度学习分布式训练框架 horovod (15) --- 广播 & 通知 目录 [源码解析] 深度学习分布式训练框架 horovod (15) --- 广播 & 通知 0x00 摘要 0x01 问题 1.1 HorovodInternalError 1.2 HostsUpdateInterrupt 0x02 广播机制 2.1 广播实现 2.1.1 TensorFlowKerasState 2.1.2 广播模型 2.1.3 广播变量 2.1.4 广播对象 2.1.5 HVD C…
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和分类.它的基本思想是:前向将上一个时刻的输出和本时刻的输入同时作为网络输入,得到本时刻的输出,然后不断地重复这个过程.后向通过BPTT(Back Propagation Through Time)算法来训练得到网络的权重.RNN比CNN更加彻底的是,CNN通过卷积运算共享权重从而减少计算量,而RNN…
不多说,直接上干货! 基于R-CNN的物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187029 作者:hjimce 一.相关理论 本篇博文主要讲解2014年CVPR上的经典paper:<Rich feature hierarchies for Accurate Object Detection and Segmentation>,这篇文章的算法思想又被称之为:R-CNN(Regions with Convolutional N…
一.深度学习建模与调试流程 先看训练集上的结果怎么样(有些机器学习模型没必要这么做,比如决策树.KNN.Adaboost 啥的,理论上在训练集上一定能做到完全正确,没啥好检查的) Deep Learning 里面过拟合并不是首要的问题,或者说想要把神经网络训练得好,至少先在训练集上结果非常好,再考虑那些改善过拟合的技术(BN,Dropout 之类的).否则的话回去检查三个 step 哪里有问题. Deep Learning 中的方法为了解决两个主要问题而提出:1.训练集做得不好:2.训练集做得好…