pid=26358">https://uva.onlinejudge.org/index.phpoption=com_onlinejudge&Itemid=8&category=279&page=show_problem&problem=3937 题目:http://acm.bnu.edu.cn/v3/external/124/12493.pdf 大致题意:圆上有偶数n个点.每m个点连起来.最后能够把全部点串联起来就合法.问有多少个m能够完毕串联,串联后形状…
long long phi(long long x) { long long res=x,a=x,i; ;i*i<=a;i++) { ) { res=res/i*(i-); ) a=a/i; } } ) res=res/a*(a-); return res; }…
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ(8)=4,因为1,3,5,7均和8互质. 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明. [证明]: 设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系.因此φ(n)的值使用算术基本定理便知, 若 n= ∏p^(α(下标p))p|…
Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3937 题目大意:圆上有N个点把圆分成N等分,求隔同样的点能一笔画全然部点的方法: 思考:要一笔画出,那么(N.K)必然没有在…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4135 题目大意: 求区间[a, b]中与N互质的数目. 解题思路: 首先对n求出所有素因子. 对于区间[1, m]中,只需要对n素因子求出所有子集,就可以求出所有的与n不互质的数目num,那么互质的数就是m-num: 对于区间[a, b],就等于[1, b]的数目 - [1,a - 1]的数目. #include<iostream> using namespace std; typedef lo…
题目: GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 125 Accepted Submission(s): 84   Problem Description Do you have spent some time to think and try to solve those unsolved problem afte…
题意: 给你一个T,是样例的个数,接下来是五个数l1,r1,l2,r2,k  前四个数代表两个区间(l1,r1),(l2,r2)这个题l1=1,l2=1; 取x1属于(1,r1),x2属于(1,r2): 求使得gcd(x1,x2)==k 的(x1,x2)的个数,特别的(1,2)和(2,1)只计算一次: 思路: 他让求gcd等于k的   我们可以让r1,r2都除以k相当于求               取x1属于(1,r1/k),x2属于(1,r2/k): 求使得gcd(x1,x2)==1 的(x…
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((10^x)-1)*(8/9) 那么有m=((10^x)-1)*(8/9)=k*L,answer即满足条件的最小的x 性质1:若ax=by且a和b互质,那么说明a中没有任何b的质因子,b的质因子一定都在x里.所以x是b的倍数. 所以先想方设法在等式中构造两个互质的数以便化简.我们取p=8/gcd(8,L…
http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行的了. 首先我们要了解欧拉函数的几个性质和推论:(今天跟好基友Konjak魔芋讨论了好久..) 推论(一): phi(p^k)=(p-1)*p^(k-1) 证明: 令n=p^k,小于等于n的正整数数中,所有p的倍数共有p^k /p = p^(k-1)个. 1~n出去p的倍数,所以phi(n)= n -  p^…
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一下前缀和就行 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; ; const int INF=0x3f3f3…