NNLM原理及Pytorch实现】的更多相关文章

NNLM NNLM:Neural Network Language Model,神经网络语言模型.源自Bengio等人于2001年发表在NIPS上的<A Neural Probabilistic Language Model一文. 理论 模型结构 任务 根据\(w_{t-n+1}...w_{t-1}\)来预测\(w_t\)是什么单词,即用\(n-1\)个单词来预测第\(n\)个单词 符号 \(V\):词汇的总数,即词汇表的大小 \(m\):词向量的长度 \(C\):\(V\)行,m列的矩阵表示词…
3D点云重建原理及Pytorch实现 Pytorch: Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction 一种Pytorch实现方法:学习高效的点云生成方法用于稠密三维物体重建 Article: https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/paper.pdf Original TF implementation: ht…
前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(EMA)的原理及PyTorch实现: 2. 理解滑动平均(exponential moving average): 完…
[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 目录 [源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 0x00 摘要 0x01 总体逻辑 0x02 废弃类 2.1 Variable 2.2 Function 0x03 Tensor 3.1 定义 in python 3.2 查找定义 3.2.1 Tensor 3.2.2 _TensorBase 3.3 转换 3.3.1 Python 导入 3.3.2 C++ 导出 & 初始化 3.3.2.1 共享库…
[源码解析]PyTorch如何实现前向传播(2) --- 基础类(下) 目录 [源码解析]PyTorch如何实现前向传播(2) --- 基础类(下) 0x00 摘要 0x01 前文回顾 0x02 TensorImpl 2.1 转嫁 2.2 定义 0x03 自动求导相关类 3.1 AutogradMeta 3.2 DifferentiableViewMeta 3.3 AutogradContext 3.4 Auto Function 0x04 Node 4.1 定义 4.2 重要成员变量 4.2.…
[源码解析] PyTorch如何实现前向传播(3) --- 具体实现 目录 [源码解析] PyTorch如何实现前向传播(3) --- 具体实现 0x00 摘要 0x01 计算图 1.1 图的相关类 1.2 动态图 1.3 动态展示 0x02 总体分析 0x03 Node 继承体系 3.1 继承体系 3.2 Node 3.3 SubBackward0 3.4 PowBackward0 3.5 MulBackward0 3.6 PermuteBackward 0x04 前向计算 4.1 减法实现…
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现   线性回归的基本要素 模型 为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年).接下来我们希望探索价格与这两个因素的具体关系.线性回归假设输出与各个输入之间是线性关系: price=warea⋅area+wage⋅age+b 数据集 我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄.我们希望在这个数据上面寻找模型参…
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 代码下载地址 https://download.csdn.net/download/xiuyu1860/12156391 pytorch版本为1.3 线性回归的基本要素 模型 构建一个假设模型,假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年). price=warea⋅area+wage⋅age+b \mathrm{price} = w_{\mathrm{area}…
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224) . 固定输入数据大小有两个问题: 1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字. 2.可能你会说可以…
概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jimmy Ba 在提交到 2015 年 ICLR 论文(Adam: A Method for Stochastic Optimization)中提出的.该算法名为「Adam」,其并不是首字母缩写,也不是人名.它的名称来源于适应性矩估计(adaptive moment estimation) Adam(A…
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转载自机器之心:https://www.jiqizhixin.com/articles/2018-11-06-10?from=synced&keyword=transformer 在学习的过程中,将代码及排版整理了一下,方便阅读. "Attention is All You Need"…
一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.po…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
pytorch中的词向量的使用 在pytorch我们使用nn.embedding进行词嵌入的工作. 具体用法就是: import torch word_to_ix={'hello':0,'world':1} embeds = torch.nn.Embedding(2,5) hello_idx=torch.LongTensor([word_to_ix['hello']]) hello_embed = embeds(hello_idx) print(hello_embed) print(embeds…
前言 申请的专栏开通了,刚好最近闲下来了,就打算开这个坑了hhhhh 第一篇就先讲一讲pytorch的运行机制好了... 记得当时刚刚接触的时候一直搞不明白,为什么自己只是定义了几个网络,就可以完整的训练整个模型,它背后的机制又是如何,搞明白了这个,才有可能去做更多的定制的更改,比如更改loss,反传方式,梯度下降机制,甚至自定义参数更新速率(比如学习率随着迭代轮数下降),文章比较浅显,希望各位大神不吝赐教. 知识储备 看此文章的前提,大概需要你写过一个利用pytorch的训练程序,哪怕官网上的…
论文地址:http://www.iro.umontreal.ca/~vincentp/Publications/lm_jmlr.pdf 论文给出了NNLM的框架图: 针对论文,实现代码如下: # -*- coding: utf-8 -*- # @time : 2019/10/26 12:20 import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd i…
一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量. Word2vec的模型以大规模语料库作为输入,然后生成一个向量空间(通常为几百维).词典中的每个词都对应了向量空间中的一个独一的向量,而且语料库中拥有共同上下文的词映射到向量空间中的距离会更近. word2vec目前普遍使用的是Google2013年发布的C语言版本,现在也有Java.C++.p…
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_1 : Basic code syntax of PT(Pytorch) im…
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是[N X M] 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. 运行结果: 不难看出,我们构建了这样的一…
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整:或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播 1   detach()[source] 返回一个新的Variable,从当前计算图中分离下来的,…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效.如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类和方法,这些类和方法覆盖了神经网络中的线性变换.激活函数.卷积层.全连接层.池化层等常用神经网络结构的实现.在完成模型的搭建之后,我们还可以使用PyTorch提供的类型丰富的优化函数来…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
pytorch之nn.Conv1d详解 之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下. Conv1dclass torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) – 输入信号的通道.在文本分类中,即为词向量的维度o…
强化学习策略梯度方法之: REINFORCE 算法 (从原理到代码实现) 2018-04-01  15:15:42   最近在看policy gradient algorithm, 其中一种比较经典的算法当属:REINFORCE 算法,已经广泛的应用于各种计算机视觉任务当中. [REINFORCE 算法原理推导]  [Pytorch 代码实现] 该图像来自于:https://github.com/JamesChuanggg/pytorch-REINFORCE/blob/master/assets…
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 PyTorch 其他项目 自然语言处理和语音处理 该部分项目涉及语音识别.多说话人语音处理.机器翻译.共指消解.情感分类.词嵌入/表征.语音生成.文本语音转换.视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库.工具集.框架. 这些项目有很多是官方的实现,其中…
一.Word2Vec简介 Word2Vec 是 Google 于 2013 年开源推出的一款将词表征为实数值向量的高效工具,采用的模型有CBOW(Continuous Bag-Of-Words,连续的词袋模型)和Skip-gram两种.Word2Vec通过训练,可以把对文本内容的处理简化为K维向量空间中的向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度.因此,Word2Vec输出的词向量可以被用来做很多NLP相关的工作,比如聚类.找同义词.词性分析等等.经过训练,部分单词向量的加法组…
首先先放下github地址:https://github.com/acm5656/ssd_pytorch 然后放上参考的代码的github地址:https://github.com/amdegroot/ssd.pytorch 为什么要使用pytorch复现呢,因为好多大佬的代码对于萌新真的不友好,看半天看不懂,所以笔者本着学习和练手的目的,尝试复现下,并分享出来帮助其他萌新学习,大佬有兴趣看了后可以提些建议~ 然后对ssd原理感兴趣的同学可以参考我的这篇博客https://www.cnblogs…
squeezenet是16年发布的一款轻量级网络模型,模型很小,只有4.8M,可用于移动设备,嵌入式设备. 关于squeezenet的原理可自行阅读论文或查找博客,这里主要解读下pytorch对squeezenet的官方实现. 地址:https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py 首先定义fire模块,这是squeezenet的核心所在,降低3X3卷积的数量. class Fire(nn…