思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ; ][],C[][],f[],val[],X,g[]; ],allnum[],Ans,T; +(<<)],s2[+(<<)]; bool operator<(Node a,Node b){return…
$Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\a_{31}x_1+a_{32}x_2+...+a_{3n}x_n=b_3\end{matrix}\right.$​ 好像也可以写成这样: $AX=B$ 其实就是小学学的加减消元…
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(matrix){ let l=[];//是否为自由元 let ans=[];//存储解 const n=matrix.Column-1;//解的个数 const EPS=0.00001; let res=0,r=0; for(let i=0;i<matrix.Column;i++){ for(let j=…
/* title:Gauss消元整数解/小数解整数矩阵模板 author:lhk time: 2016.9.11 没学vim的菜鸡自己手打了 */ #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<cmath> #define clr(x) memset(x,0,sizeof(x)) #define clrdown(x) memse…
Gambler Bo Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1152    Accepted Submission(s): 471Special Judge Problem Description Gambler Bo is very proficient in a matrix game. You have a N×M m…
[BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案数. 题解 一脸的容斥啊. 先矩阵树定理暴力算出所有符合条件的生成树,然后减去\(n-2\)中颜色的方案数, 再加上\(n-3\)种颜色的方案数...... 所以直接暴力枚举颜色的子集,每次矩阵树就好了. 时间复杂度大概是\(O(2^{n-1}n^3log)\)??? 虽然\(log\)小的不行,甚…
Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5875   Accepted: 2825 Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and…
开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作…
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都属于不同公司就很难直接实现. 按套路上容斥: 如果直接将几个公司的修路列表加进矩阵里的话,求出来的是"只使用"这些边的生成树个数. 很明显上容斥之后就会直接变成"只使用"且"每个都被使用"的个数. 正好符合题目要求的生成树的n-1条边分属于n-1个公…
loj#6072 苹果树(折半搜索,矩阵树定理,容斥) loj 题解时间 $ n \le 40 $ . 无比精确的数字. 很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了. 折半搜索排序来统计有i个果子是有用的情况下的方案数. 然后矩阵树求生成树个数,容斥乱搞. #include<bits/stdc++.h> using namespace std; template<typename TP>inline void read(TP &tar)…