一.参数criterion:特征选择标准,[entropy, gini].默认gini,即CART算法. splitter:特征划分标准,[best, random].best在特征的所有划分点中找出最优的划分点,random随机的在部分划分点中找局部最优的划分点.默认的‘best’适合样本量不大的时候,而如果样本数据量非常大,此时决策树构建推荐‘random’. max_depth:决策树最大深度,[int, None].默认值是‘None’.一般数据比较少或者特征少的时候可以不用管这个值,…