<谷歌终于开源BERT代码:3 亿参数量,机器之心全面解读>,上周推送的这篇文章,全面解读基于TensorFlow实现的BERT代码.现在,PyTorch用户的福利来了:一个名为Hugging Face的团队近日公开了BERT模型的谷歌官方TensorFlow库的op-for-op PyTorch重新实现[点击阅读原文直接访问]: https://github.com/huggingface/pytorch-pretrained-BERT 这个实现可以为BERT加载任何预训练的TensorFl…
BERT模型源码解析 modeling.py 目录 属性 类 class BertConfig(object)   BERT模型配置参数类 class BertModel(object)   BERT模型类 函数 def gelu(x)  格鲁激活函数 def get_activation(activation_string) 通过名称获取激活函数 def get_assignment_map_from_checkpoint 读取检查点函数 def dropout(input_tensor, d…
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks Task #1: Masked LM Task #2: Next Sentence Prediction Pre-training Procedure Fine-tuning Procedure Comparison of BERT and OpenAI GPT 实验 GLUE Datasets G…
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践. 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 BERT 全称为 Bidirectional Encoder Representations from Transformer,是谷歌在 2018 年 10 月发布的语言表示模型.BERT 通过维基百科和书籍语料组成的庞…
近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践.今天在这里做一下笔记. 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介绍 代码走读&要点归纳 基于BERT模型实现垃圾邮件分类 TREC06语料库 基准模型介绍 BERT迁移模型实现 一.BERT模型简介 1.概览 BERT模型的全称是Bidirectional Encoder Representations from Transformer,即Transformer…
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们定制的文本分类模型中(如text-CNN等).总之现在只要你的计算资源能满足,一般问题都可以用BERT来处理,此次针对公司的一个实际项目——一个多类别(61类)的文本分类问题,其就取得了很好的结果. 我们此次的任务是一个数据分布极度不平衡的多类别文本分类(有的类别下只有几个或者十几个样本,有的类别下…
最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并希望得到指导和纠正. 论文标题 Attention Is ALL You Need 论文地址 https://arxiv.org/pdf/1706.03762.pdf 摘要 序列转换方式由基于…
一.BERT模型: 前提:Seq2Seq模型 前提:transformer模型 bert实战教程1 使用BERT生成句向量,BERT做文本分类.文本相似度计算 bert中文分类实践 用bert做中文命名实体识别 BERT相关资源 BERT相关论文.文章和代码资源汇总 1.WordEmbedding到BERT的发展过程: 预训练:先通过大量预料学习单词的embedding,在下游的NLP学习任务中就可以使用了. 下游任务:Frozen(预训练的底层参数embedding不变)和Fine-tunin…
我的机器学习教程「美团」算法工程师带你入门机器学习   已经开始更新了,欢迎大家订阅~ 任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI.算法.编程和大数据知识分享,以及免费的SSR节点和学习资料.其他平台(知乎/B站)也是同名「图灵的猫」,不要迷路哦 ​ ​ ​ ​ BERT模型代码已经发布,可以在我的github: NLP-BERT--Python3.6-pytorch 中下载,请记得star…
转载于 腾讯Bugly 发表于 腾讯Bugly的专栏 原文链接:https://cloud.tencent.com/developer/article/1389555 本文首先介绍BERT模型要做什么,即:模型的输入.输出分别是什么,以及模型的预训练任务是什么:然后,分析模型的内部结构,图解如何将模型的输入一步步地转化为模型输出:最后,我们在多个中/英文.不同规模的数据集上比较了BERT模型与现有方法的文本分类效果. 1. 模型的输入/输出 BERT模型的全称是:BidirectionalEnc…
BERT模型的OneFlow实现 模型概述 BERT(Bidirectional Encoder Representations from Transformers)是NLP领域的一种预训练模型.本案例中,基于论文BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding实现了BERT模型的OneFlow版本. 模型架构 BERT 在实际应用中往往分为两步: 首先,预训练得到 BERT 语言模型…
1. 预训练的BERT模型 从头开始训练一个BERT模型是一个成本非常高的工作,所以现在一般是直接去下载已经预训练好的BERT模型.结合迁移学习,实现所要完成的NLP任务.谷歌在github上已经开放了预训练好的不同大小的BERT模型,可以在谷歌官方的github repo中下载[1]. 以下是官方提供的可下载版本: 其中L表示的是encoder的层数,H表示的是隐藏层的大小(也就是最后的前馈网络中的神经元个数,等同于特征输出维度). 除此之外,谷歌还提供了BERT-uncased与BERT-c…
使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加方便调整各种细节. 模型的生命周期的五个步骤如下: 1.准备数据 2.定义模型 3.训练模型 4.评估模型 5.进行预测 注意:使用 PyTorch API 有很多方法可以实现这些步骤中的每一个,下面是一些使用Pytorch API最简单.最常见或最惯用的方法. 一.准备数据 第一步是加载和准备数据…
模型元数据ModelMetaData是MVC中很重要的概念,它包括但不仅限于 模型的类型,模型包含了哪些属性,属性都是什么类型的,属性上都有什么特性. ASP.NET MVC3.0 提供了默认的模型元数据 DataAnnotationsModelMetadata 继承自ModelMetadata(另外系统提供了默认的模型元数据提供器DataAnnotationsModelMetadataProvider) public class DataAnnotationsModelMetadata : M…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
attention 以google神经机器翻译(NMT)为例 无attention: encoder-decoder在无attention机制时,由encoder将输入序列转化为最后一层输出state向量,再由state向量来循环输出序列每个字符. attention机制: 将整个序列的信息压缩在一维向量里造成信息丢失,并且考虑到输出的某个字符只与输入序列的某个或某几个相关,与其他输入字符不相关或相关性较弱,由此提出了attention机制.在encoder层将输入序列的每个字符output向量…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…
BERT模型是什么 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的.模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation. 1.1 模型结构 由于模型的构成元素Transformer已经解析过,就不多说了,…
ThinkPHP模型基础类提供的连贯操作方法(也有些框架称之为链式操作),可以有效的提高数据存取的代码清晰度和开发效率,并且支持所有的CURD操作. 直线电机哪家好 使用也比较简单, 假如我们现在要查询一个User表的满足状态为1的前10条记录,并希望按照用户的创建时间排序 ,代码如下: $User->where('status=1')->order('create_time')->limit(10)->select(); 这里的where.order和limit方法就被称之为连贯…
BERT模型总结 前言 ​ BERT是在Google论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>中被提出的,是一个面向NLP的无监督预训练模型,并在多达11个任务上取得了优秀的结果.这个模型的最大意义是使得NLP任务可以向CV一样使用与训练模型,这极大的方便了一个新的任务开始,因为在NLP领域,海量数据的获取还是有难度的. 模型概述:BERT是一个无监督的NLP与训练模型…
1 简介 BERT全称Bidirectional Enoceder Representations from Transformers,即双向的Transformers的Encoder.是谷歌于2018年10月提出的一个语言表示模型(language representation model). 1.1 创新点 预训练方法(pre-trained): 用Masked LM学习词语在上下文中的表示: 用Next Sentence Prediction来学习句子级表示. 1.2 成功 强大,效果好.…
前不久,谷歌AI团队新发布的BERT模型,在NLP业内引起巨大反响,认为是NLP领域里程碑式的进步.BERT模型在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7%(绝对改进率5.6%)等.BERT模型是以Transformer编码器来表示,本文在详细介绍BERT模型,Transformer编码器的原理可以参考(https…
一.BERT整体结构 BERT主要用了Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体的任务.整体架构如下图: 多个Transformer Encoder一层一层地堆叠起来,就组装成了BERT了,在论文中,作者分别用12层和24层Transformer Encoder组装了两套BERT模型,两套模型的参数总数分别为110M和340M. 二.再次理解Transformer中的Attention机制…
我们下载下来的预训练的bert模型的大小大概是400M左右,但是我们自己预训练的bert模型,或者是我们在开源的bert模型上fine-tuning之后的模型的大小大约是1.1G,我们来看看到底是什么原因造成的,首先我们可以通过下一段代码来输出我们训练好的模型的参数变量. 下面这段代码可以输出我们下载的官方预训练模型的参数变量 import tensorflow as tf from tensorflow.python import pywrap_tensorflow model_reader…
JavaScript 图片与Base64数据互相转换脚本 注: 转换过程中注意跨域问题.测试页是否支持相关标签创建.dom结构. 方法一:非Html 5使用FileReader 使用XMLHttpRequest将图像加载为blob,接着使用FileReader API将其转换为dataURL. function toDataURL(url, callback) { var xhr = new XMLHttpRequest(); xhr.onload = function() { var read…
之前我写过一篇文章,利用bert来生成token级向量(对于中文语料来说就是字级别向量),参考我的文章:<使用BERT模型生成token级向量>.但是这样做有一个致命的缺点就是字符序列长度最长为512(包含[cls]和[sep]).其实对于大多数语料来说已经够了,但是对于有些语料库中样本的字符序列长度都比较长的情况,这就有些不够用了,比如我做一个法院文书领域预测任务,里面的事实部分许多都大于1000字,我做TextCharCNN的时候定义的最大长度为1500(能够涵盖百分之95以上的样本).…
本文默认读者有一定的Transformer基础,如果没有,请先稍作学习Transormer以及BERT. 相信网上有很多方法可以生成BERT向量,最有代表性的一个就是bert as service,用几行代码就可以生成向量,但是这样生成的是句向量,也就是说,正确的做法是输入一句句子: 我是一个中国人,我热爱着中国的每一个城市. 输出的是这句句子的向量,一个768维的向量(google预训练是这么做的),这个向量是具有上下文信息的,详细参考Transformer结构.但是网上有一些做法是用bert…
这里面有很多坑,最大的坑是发现各方面都装好了结果报错  Loaded runtime CuDNN library: 7.3.1 but source was compiled with: 7.4.1,这是由于最新的tensorflow1.13需要用 Cudnn7.4.1编译.这个问题,StackOverflow上有人问到,但是目前依然未有人给出解决办法,下文会详述. 1. 去nvida官网下载显卡对应的驱动 2.下载安装Anaconda3,安装时勾选加入环境变量 3. 进入Anaconda Pr…
https://zhuanlan.zhihu.com/p/46997268 NLP突破性成果 BERT 模型详细解读 章鱼小丸子 不懂算法的产品经理不是好的程序员 ​关注她 82 人赞了该文章 Google发布的论文<Pre-training of Deep Bidirectional Transformers for Language Understanding>,提到的BERT模型刷新了自然语言处理的11项记录.最近在做NLP中问答相关的内容,抽空写了篇论文详细解读.我发现大部分关注人工智…