DRL强化学习:】的更多相关文章

IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源:互联网 发布:域名隐私保护 免费 编辑:IT博客网 时间:2019/08/26 23:49 1 前言 如果大家已经对DQN有所了解,那么大家就会知道,DeepMind测试的40多款游戏中,有那么几款游戏无论怎么训练,结果都是0的游戏,也就是DQN完全无效的游戏,有什么游戏呢?  比如上图这款游戏,叫做Mo…
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. 无模型的强化学习方法 蒙特卡洛方法 时序差分学习 值函数近似 策略搜索 5. 实战强化学习算法 Q-learning 算法 Monte Carlo Policy Gradient 算法 Actor Critic 算法 6. 深度强化学习算法 Deep Q-Networks(DQN) Deep De…
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning"的论文,在这篇论文中,他们提出了DQN算法的改进版本,他们将改进的算法应用到49种不同的Atari 2600游戏中,并且其中的一半实现了超过人类玩家的性能.现在,深度强化学习已经成为了人工智能(Artificial Intelligence,简称AI)领域最前沿的研究方向,在各个应用领域也是备受推崇,如同…
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也给想学习的小伙伴一个参考. 想要认识清楚这个算法,需要对 DRL 的算法有比较深刻的了解,推荐大家先了解下 Deep Q-learning 和 Policy Gradient 算法. 我们知道,DRL 算法大致可以分为如下这几个类别:Value Based and Policy Based,其经典算…
一.存在的问题 DQN是一个面向离散控制的算法,即输出的动作是离散的.对应到Atari 游戏中,只需要几个离散的键盘或手柄按键进行控制. 然而在实际中,控制问题则是连续的,高维的,比如一个具有6个关节的机械臂,每个关节的角度输出是连续值,假设范围是0°~360°,归一化后为(-1,1).若把每个关节角取值范围离散化,比如精度到0.01,则一个关节有200个取值,那么6个关节共有20062006个取值,若进一步提升这个精度,取值的数量将成倍增加,而且动作的数量将随着自由度的增加呈指数型增长.所以根…
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…
目录 问题 解决方法 模型选择 框架构建 Sigcomm'18 AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization 问题 主要问题:流量算法的配置周期长,人工配置难且繁复.人工配置的时间成本大,人为错误导致的性能降低. 要计算MLFQ的阈值参数是很麻烦的事情,先前有人构建了一个数学模型来优化这个阈值,在几个星期或者几个月更新一次阈值,更新周期过长. 可以使用DR…
看这篇https://blog.csdn.net/qq_16234613/article/details/80268564 1.DQN 原因:在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实. 通常做法是把Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作.如下式,通过更新参数 θ 使Q函数逼近最优Q值 . Q(s,a;θ)≍Q′(s,a) 而深度神经网…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成,功率控制和干扰协调的联合设计,以最大化信号干扰加噪声比(SINR),并使用深度强化学习解决非凸问题.通过利用深度Q学习的贪婪性质来估计行动的未来收益,我们提出了一种用于6 GHz以下频段的语音承载和毫米波(mmWave)频段的数据承载的算法.该算法利用来自连接用户的报告SINR,基站的发射功率以及所…
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning),不少人对这些高频词汇的含义及其背后的关系感到困惑,今天就为大家理清它们之间的关系和区别. 一. 深度学习: 深度学习的成功和发展,得益于算力的显著提升和大数据,数字化后产生大量的数据,可通过大量的数据训练来发现数据的规律,从而实现基于监督学习的数据预测. 基于神经网络的深度学习主要应用于图像.文…
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显.如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小. ​ 针对解决稀疏奖励问题的研究主要包括:1 Reward Shaping:奖励设计与学习 经验回放机制 探索与利用 多目标学习和辅助任务 1. Reward Shaping 人为设计的 "密…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现实世界当中,很难获得环境的转移概率,奖赏函数等等,甚至很难知道有多少个状态.倘若学习算法是不依赖于环境建模,则称为“免模型学习(model-free learning)”,这比有模型学习要难得多. 1. 蒙特卡罗强化学习: 在免模型学习的情况下,策略迭代算法会遇到几个问题: 首先,是策略无法评估,因为无法做全…
(译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你学习这些状态下他们action的值.直观的讲,这个值,Q,是 状态-动作值(state-action value.) 所以,在Q-Leaning中,你设置初始 状态-动作值为0,然后你去附近溜溜并且探索 状态-动作空间.在你试了一个状态下的某一动作之后,你会评价将会转向哪一个状态.如果该动作将导致一…
# 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016](https://webdocs.cs.ualberta.ca/~sutton/book/) ## 数学符号的含义 * 通用 $a$ - 行动(action). $A_t$ - 第t次的行动(select action).通常指求解的…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做演示 q-learning的伪代码先看这部分,很重要 简单的算法语言描述就是 开始执行任务: 随机选择一个初始动作 执行这些动作 若未达到目标状态,则执行一下几步 在当前状态s所有可能的行为中选择一个a 利用a得到下一个状态s_ 计算Q(s,a) (对当前的行为进行学习) 下一个状态等于当前状态 开…
本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点,  3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已.   对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已.  Q-learning  步骤:场景一:假设前提:  成功的路  A1, A2, ..... An   …
API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of rewards and compute discounted rewards for an episode. cross_entropy_reward_loss(logits, actions, ...) Calculate the loss for Policy Gradient Network.…
在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用.这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学习原理. 本篇主要参考了AlphaGo Zero的论文, AlphaGo Zero综述和AlphaGo Zero Cheat Sheet. 1. AlphaGo Zero模型基础 AlphaGo Zero不需要学习人类的棋谱,通过自我对弈完成棋力提高.主要使用了两个模型,第一个就是我们上一节介绍MC…
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search). 本篇主要参考了UCL强化学习课程的第八讲,第九讲部分. 1. 基于模拟的搜索概述 什么是基于模拟的搜索呢?当然主要是两个点:一个是模拟,一个是搜索.模拟我们在上一篇也讨论过,就是基于强化学习模型进行采样,得到样…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Critic难收敛的问题,这个算法就是是深度确定性策略梯度(Deep Deterministic Policy Gradient,以下简称DDPG). 本篇主要参考了DDPG的论文和ICML 2016的deep RL tutorial. 1. 从随机策略到确定性策略 从DDPG这个名字看,它是由D(Dee…
在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化.而Asynchronous Advantage Actor-critic(以下简称A3C)就是其中比较好的优化算法.本文我们讨论A3C的算法原理和算法流程. 本文主要参考了A3C的论文,以及ICML 2016的deep RL tutorial. 1. A3C的引入 上一篇Actor-Critic算法的代码,其实很难收敛,无论怎么调参…
在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法需要完整的状态序列,同时单独对策略函数进行迭代更新,不太容易收敛. 在本篇我们讨论策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法. 本文主要参考了Sutton的强化学习书第13章和UCL强化学习讲义的第7讲. 1. Actor-Critic…
在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很多局限性,因此在另一些场景下我们需要其他的方法,比如本篇讨论的策略梯度(Policy Gradient),它是Policy Based强化学习方法,基于策略来学习. 本文参考了Sutton的强化学习书第13章和策略梯度的论文. 1. Value Based强化学习方法的不足 DQN系列强化学习算法主…