首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
OpenCV定制化创建角点检测子
】的更多相关文章
OpenCV定制化创建角点检测子
定制化创建角点检测子 目标 在这个教程中我们将涉及: 使用 OpenCV 函数 cornerEigenValsAndVecs 来计算像素对应的本征值和本征向量来确定其是否是角点. 使用OpenCV 函数 cornerMinEigenVal 通过最小化本征值来进行角点检测. 用上述两个函数实现一个定制化的Harris detector,类似Shi-Tomasi检测子. 解释 代码 这个教程的代码如下所示.源代码还可以从 这个链接下载得到 #include "opencv2/highgui/high…
OpenCV Shi-Tomasi角点检测子
Shi-Tomasi角点检测子 目标 在这个教程中我们将涉及: 使用函数 goodFeaturesToTrack 来调用Shi-Tomasi方法检测角点. 理论 代码 这个教程的代码如下所示.源代码还可以从 这个链接下载得到 #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio…
OpenCV Harris 角点检测子
Harris 角点检测子 目标 本教程中我们将涉及: 有哪些特征?它们有什么用? 使用函数 cornerHarris 通过 Harris-Stephens方法检测角点. 理论 有哪些特征? 在计算机视觉中,我们通常需要寻找两张图上的匹配关键点.为什么?因为一旦我们知道了两张图是相关联的,我们就可以使用 *both 图像来提取它们中的信息. 是指 匹配关键点 是指在场景中可以很容易识别出来的 特性 . 这些特性就是这里所说的 特征 . 因此,特征应该有什么样的特性呢? 应该具有 可识别的独一无二性…
OpenCV教程(43) harris角的检测(1)
计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配. 相对于边,角更适合描述图像特征,比如下面的图像中,大概有6种特征,我们用A.B.C.D.E.F来描述,其中A, B是平的区域,在图像中很难精确定位,C,D是边,比A,B好些,但是图像中的边也很多,定位到某个边也比较困难,相比来说E,F的角更适合描述当前的图像的特征,也更好检测,因为你不论怎么移动图像,这些角的特征都和图像其它部分不…
opencv笔记6:角点检测
time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇学习笔记是各种模板操作,是图像增强技术. 那么我节写来应该继续找下有没有别的图像增强技术. 但是,我对增强还不是特别理解. 图像增强:划定ROI区域,然后想方设法将感兴趣的特征有选择的突出.注意,这可是不去考虑图像质量下降的原因的. 图像恢复:针对图像降质的原因,设法去补偿降质因素,从而使改善后的图…
cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测
参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014.html 不废话进入主题: 角点是一类具有特定特征的点,角点也是处在一个无论框框往哪边移动 框框内像素值都会变化很大的情况而定下来的点 可以这么去理解.... 如上图有三个颜色的框框,如果我们对蓝色框框进行移动,无论是水平 还是垂直的方向移动 都不会对框框内像素造成很大的变化...这种是内部区域 如…
Opencv学习笔记------Harris角点检测
image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/7391511 文章目录: 一.Harris角点检测基本理论 二.opencv代码实现 三.改进的Harris角点检测 四.FAST角点检测 五.参考文献 六.附录(资料和源码) 一.Harris角点检测基本理论(要讲清楚东西太多,附录提供文档详细说明) 1.1 简略表达: 角点:最直观的印象就是在水平…
OpenCV教程(45) harris角的检测(3)
在前面一篇教程中,我们通过取局部最大值的方法来处理检测结果,但是从图像中可以看到harris角的分布并不均匀,在纹理颜色比较深的地方检测的harris角结果更密集一些.本章中,我们使用一个简单的策略算法,首先在检测的harris角图像中,找到一个值最大的角,后面的最大值角检测至少要和前面的角有一个距离,这样循环查找角,直到得到指定数目的角位置. 在OpenCV中,我们可以通过下面的代码得到结果: // Compute good features to track std::…
opencv亚像素级角点检测
一般角点检测: harris cv::cornerHarris() shi-tomasi cv::goodFeaturesToTrack() 亚像素级角点检测是在一般角点检测基础之上将检测出的角点精确到亚像素级 因此需要先使用harris或shi-tomasi检测出角点,然后再调用cv::cornerSubPix()…
OpenCV教程(44) harris角的检测(2)
在上一篇教程中,我们得到的harris特征角二值图中,角的数目特别多,本章我们用一个局部最大化的方法,只保留局部值最大的harris特征角. // Harris角计算 cv::cornerHarris(image,cornerStrength, neighbourhood, // neighborhood size aperture, // aperture size k); // Harris parame…