P3389 【模板】高斯消元法】的更多相关文章

P3389 [模板]高斯消元法 题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 n 第二至 n+1行,每行 n+1 个整数,为a1​,a2​⋯an​ 和 b,代表一组方程. 输出格式: 共n行,每行一个数,第 i行为 xi​ (保留2位小数) 如果不存在唯一解,在第一行输出"No Solution". 输入输出样例 输入样例#1: 3 1 3 4 5 1 4 7 3 9 3 2 2 输出样例#1: -0.97 5.18 -…
题解 P3389 [[模板]高斯消元法] 看到大家都没有重载运算符,那我就重载一下运算符给大家娱乐一下 我使用的是高斯-约旦消元法,这种方法是精度最高的(相对地) 一句话解释高斯约旦消元法: 通过加减消元法,依次制定x0,并通过加减消元法消去其他方程的x0的系数.对于这样的系数矩阵我们只进行初等变幻保证了其正确性 看代码吧,主要是希望帮助大家可以学到一些重载的方法 #include<iostream> #include<cstdio> #include<algorithm&g…
P3389 [模板]高斯消元法 以下内容都可省略,直接转大佬博客%%% 高斯消元总结 只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切 高斯消元最大用途就是解多元一次方程组——引自某大佬原话 的确是这样的,那么如何去做呢? 类比二元一次方程组: $a_1x+b_1y=c_1$ $a_2x+b_2y=c_2$ emmm,怎么做呢?消去一项!嗯. 也就是把第$i$个方程的第$i$项变成1 $\frac{a_1}{a_1}x+\frac{b_1}{a_1}y=\…
https://www.luogu.org/problemnew/show/P3389 这里主要说说怎么判断不存在唯一解 我们把每一行的第一个非零元称为关键元 枚举到一个变量,如果剩下的行中该变量的系数都是0,那么这个元素就是一个自由元 若方程组有唯一解,第i行的关键元是第i个 否则,一定至少存在某一行i,它的关键元是第j个(j>i) 具体实现: 假设当前枚举到第i行,我们会把第i行之后的 第i列元素最大的那一行 交换到第i行 只需要换完之后加一个判断:if(fabs(a[r][i])<eps…
高斯消元求解n元一次线性方程组的板子题: 先举个栗子: • 2x + y -   z =  8-----------① •-3x - y + 2z = -11---------② •-2x + y + 2z = -3----------③  先将它存到矩阵中: ②+①* (2/3) ③+① 接着对①变换 得到x,y,z: 但是我们想到,如果它有在原方程中就有两个或多个方程本质上是一样的,那他不就解不出来了咩? 比如: 最后得出: 这显然就属于无解的情况 又比如: 这显然就属于无穷多解的情况 这里…
这是个版子题,当然本蒟蒻也是看了好几天才明白 对于这样的线性方程组,我们可以看成是一个矩阵 对于百度百科给的定义(我感到很迷)赶脚和行列式有的一拼 但我们要注意的是: 行列式是一个确切的值(有关行列式求值,下片博文再说),可以看做是一个数值: 而矩阵不同,矩阵是一个数表,无特殊的值.当然,性质也略有不同(这里就先不细讲了) 高斯消元的核心就是把这个n*n的矩阵消成一个对角矩阵(就是除了a[i][i]为1以外,其余全为零但是不要乱划a[i][n+1]这是我们要输出的东西)然后就ok了 其中一些性质…
题目链接: gauss消元求线性方程组的解. 这道题对于多解和无解都输出No solution #include <algorithm> #include <cstdio> #include <cmath> #include <iostream> using namespace std; ; ; double A[maxn][maxn], ans[maxn]; int n; int main() { scanf("%d",&n);…
以下这个好像叫高斯约旦消元法,没有回代 https://www.luogu.org/blog/37781/solution-p3389 #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-7 using namespace std; ][]; int n; void swap_line(int x,int y) { ;i<=n+;i++) swap(a[x][i],a[y][i])…
对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元的系数最终组成一个上三角矩阵,再倒序回带,求出答案 为了保证程序的可操作性,我们每次要将用来消去下面的元的数化为1, 再将下面的行每个元的系数同时减去主行的系数*扩大的倍数, 这时倍数即为该行要消去的元的系数 建议看一下<数学一本通>的内容,介绍的比较浅显 寻找主元: double的除法操作是有一…
题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 nn 第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdots a_na1​,a2​⋯an​ 和 bb,代表一组方程. 输出格式: 共n行,每行一个数,第 ii行为 x_ixi​ (保留2位小数) 如果不存在唯一解,在第一行输出"No Solution". 输入输出样例 输入样例#1: 复制 3 1 3 4 5 1 4 7 3 9 3 2 2 输出…