第一步:首先需要安装工具python 第二步:在电脑cmd后台下载安装如下工具: (有一些是安装好python电脑自带有哦) 有一些会出现一种情况就是安装不了词云展示库 有下面解决方法,需看请复制链接查看:https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud 第三步: 1.准备好你打算统计的文件,命名为 家.txt,保存到桌面 2.准备一个做背景的图片,命名为girl.jpg,同样保存到桌面 第四步:插入代码 import re # 正则表达…
对于在windows(Pycharm工具)里实现一个简单的词云还是经过了几步小挫折,跟大家分享下,如果遇到类似问题可以参考: 1. 导入wordcloud包时候报错,当然很明显没有安装此包. 2. 安装过程中报一个关于 vc++ 编译器的错误. 3. 安装wordcloud成功后,在Pycharm里面执行from wordcloud import WordCloud 报没有WordCloud这个module. 针对上面问题可参考如下解决方案: 1. 运行->cmd : 执行 pip instal…
网上大多数词云的代码都是基于原始文本生成,这里写一个根据词频生成词云的小例子,都是基于现成的函数. 另外有个在线制作词云的网站也很不错,推荐使用:WordArt 安装词云与画图包 pip3 install wordcloud pip3 install matplotlib word_cloud.py(生成词云的程序) from wordcloud import WordCloud import matplotlib.pyplot as plt # 生成词云 def create_word_clo…
1.词云图 词云图,也叫文字云,是对文本中出现频率较高的"关键词"予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨. 先看几个词云图 简书签约作者标签词云 全国政协常委会工作报告词云图 2.推荐几个不错的词云图工具 Tagul Tagul云可以自定义字体.词云的形状(有爱心.BUS.雪人.人像.UFO等),颜色等,做出来的词云图很酷炫,为网站访问者提供良好的用户体验.用户可以在网站做好词云图,然后印在衣服.杯子.鼠标垫等地方,自己设计…
一 . Java爬取B站弹幕 弹幕的存储位置 如何通过B站视频AV号找到弹幕对应的xml文件号 首先爬取视频网页,将对应视频网页源码获得 就可以找到该视频的av号aid=8678034 还有弹幕序号,cid=14295428 弹幕存放位置为  http://comment.bilibili.com/14295428.xml import org.apache.http.HttpEntity; import org.apache.http.client.methods.CloseableHttpR…
需求: 1.设计一个词频统计的程序. 2.英语文章中包含的英语标点符号不计入统计. 3.将统计结果按照单词的出现频率由大到小进行排序. 设计: 1.基本功能和用法会在程序中进行提示. 2.原理是利用分隔符分词存入列表,然后从列表读出存入字典,键为词,值存放词的数量. 代码如图所示: 1.导入程序所需模块. 2.定义readfile类,实现去除文章中标点符号的功能. 3.定义一个getstr类,对结果输出格式进行定义. 4.构造程序主函数. 测试用例: 测试用例我选择了马丁.路德.金的演讲稿. 部…
前言: 笔主开发环境:Python3+Windows 推荐初学者使用Anaconda来搭建Python环境,这样很方便而且能提高学习速度与效率. 简介: wordcloud是Python中的一个小巧的词云生成器. github:https://github.com/amueller/word_cloud 官网:https://amueller.github.io/word_cloud/ 下载: 1--使用conda下载(前提是安装了Anaconda,推荐这种方法): conda install…
1.利用jieba分词,排除停用词stopword之后,对文章中的词进行词频统计,并用matplotlib进行直方图展示 # coding: utf-8 import codecs import matplotlib.pyplot as plt import jieba # import sys # reload(sys) # sys.setdefaultencoding('utf-8') from pylab import mpl mpl.rcParams['font.sans-serif']…
1. 词频统计: import jieba txt = open("threekingdoms3.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word,0) + 1 items = list(counts.ite…
今天学习了wordcloud库,对<三国演义>生成了词云图片,非常漂亮.就想多尝试几个,结果发现一系列问题.最常出现的一个错误就是"UnicodeDecodeError : ...", 冒号后面的info不一而足.看意思也能猜出是"encoding"解码方式不对,于是各种编码尝试,有的默认或者"ANSI"就可以解码,有的必须用"UTF-8", 一狠心用了”errors='ignore', 结果顺利运行了,词云图片却…
字典是针对非序列集合而提供的一种数据类型,字典中的数据是无序排列的. 字典的操作 为字典增加一项 dict[key] = value students = {"Z004":"John","T002":"Peter"} students Out[23]: {'T002': 'Peter', 'Z004': 'John'} students["S007"] = "Susan" student…
今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt d=path.dirname(__file__) text=open(path.join(d,"data//constitution.txt")).read() # 步骤3-2:设置一张词云图对象 wordcloud = WordCloud(background_color="…
# 使用Python进行词频统计 mytext = """Background Industrial Light & Magic (ILM) was started by filmmaker George Lucas, . ILM has won numerous Academy Awards for Best Visual Effects, not to mention a string of Clio awards for its work on televisi…
代码如下: # -*- coding:utf-8 -*- import requests import pandas as pd import time import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba header={ 'authorization':'Bearer 2|1:0|10:1515395885|4:z_c0|92:Mi4xOFQ0UEF3QUFBQUFBRU1LMElhcTVDe…
原始数据: 程序: #统计词频 library(wordcloud) # F:/master2017/ch4/weibo170.cut.txt text <- readLines("F:/master2017/ch4/weibo170.cut.txt") txtList <- lapply(txt, strsplit," ") txtChar <- unlist(txtList) txtChar <- gsub(pattern = "…
需求:给瓦尔登湖文章统计单词出现的频率 思路:首先读取文件并以空格分割得到列表,然后利用for循环遍历列表中的元素并把去掉列表元素中的符号,第三步去掉相同的元素,将列表转换为一个字典,最后按照键值对升序排序. 源码: #!/user/bin/env python #-*-coding:utf-8 -*- #Author: qinjiaxi import string path = "C:\\Users\\Administrator\\Desktop\\walden.txt" with…
import jieba from nltk import * from wordcloud import WordCloud import matplotlib.pyplot as plt words = [] with open('对共享单车的看法.txt', 'r') as f: for line in f.readlines(): seg_list = jieba.cut(line, cut_all=False) for w in seg_list: words.append(w) f.…
#CalHamletV1.py def getText(): #定义函数读取文件 txt = open("hamlet.txt","r").read() txt = txt.lower() #将所有字符转换为小写 for ch in '!@#$%^&*(_)-+=\\[]}{|;:\'\"`~,<.>?/': txt = txt.replace(ch, " ") #将所有特殊符号用空格替代 return txt ha…
# 把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号 def words(text): return re.findall('[a-z]+', text.lower()) def train(features): model = collections.defaultdict(lambda: 1) for f in features: model[f] += 1 return model NWORDS = train(words(open('big.txt').read())…
下面是函数sin,cos函数的图像: 代码如下: import numpy as np import pylab as pl import matplotlib.font_manager as fm import matplotlib t=np.arange(0.0,2.0*np.pi,0.01) s=np.sin(t) z=np.cos(t) pl.plot(t,s,label='正弦') pl.plot(t,z,label='余弦') pl.xlabel('x-变量',fontpropert…
利用Python做一个词频统计 GitHub地址:FightingBob [Give me a star , thanks.] 词频统计 对纯英语的文本文件[Eg: 瓦尔登湖(英文版).txt]的英文单词出现的次数进行统计,并记录起来 代码实现 import string from os import path with open('瓦尔登湖(英文版).txt','rb') as text1: words = [word.strip(string.punctuation).lower() for…
一.环境以及注意事项 1.windows10家庭版 python 3.7.1 2.需要使用到的库 wordcloud(词云),jieba(中文分词库),安装过程不展示 3.注意事项:由于wordcloud默认是英文不支持中文,所以需要一个特殊字体 simsum.tff.下载地址: https://s3-us-west-2.amazonaws.com/notion-static/b869cb0c7f4e4c909a069eaebbd2b7ad/simsun.ttf 请安装到C:\Windows\F…
一.目的 1. 熟悉jieba库和wordcloud库的使用方法: 2. 熟悉文本词频统计和词云生成的基本方法. 二.内容 1. 从网上自行下载一个长篇英文小说,统计并输出该小说中词频最大的TOP 20结果.利用该文本和wordcloud库.imageio库等,生成一个属于自己的词云图形. 代码: import wordcloud import imageio image=imageio.imread("苹果.jpg") f=open("Free Realms.txt&quo…
词云小demo jiebawordcloud 一 什么是词云? 由词汇组成类似云的彩色图形.“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨. 二 有什么作用? 1.直观,高大上 2.可装逼,很潇洒 三 准备工作 1.导入包——jieba和wordcloud 命令:pip install jieba 命令:pip install wordcloud 备注:对于pycha…
词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_frequencies()给定词频如何画词云图的资料找了很久,下面只讲这种方法. generate_from_frequencies适用于我已知词及其对应的词频是多少(已有数据库),不需要分词的情况下. 官方文档说generate_from_frequencies函数的参数是array of tupl…
记录瞬间 首先,要安装一些第三方包 pip install scipyCollecting scipy Downloading https://files.pythonhosted.org/packages/f1/b8/800d98339427199305f8b4a7f02827ec9bfea438d677aecbe0bd297092d5/scipy-1.2.0-cp37-cp37m-win_amd64.whl (31.7MB) 100% |███████████████████████████…
简单示例 from matplotlib import pyplot as plt from wordcloud import WordCloud filename = "text.txt" #文本路径 with open(filename,encoding="utf-8") as f: data = f.read() font = r'C:\Windows\Fonts\FZSTK.TTF' wc = WordCloud(font_path=font, # 如果是中…
因为词云有利于体现文本信息,所以我就将那天无聊时爬取的<悲伤逆流成河>的评论处理了一下,生成了词云. 关于爬取影评的爬虫大概长这个样子(实际上是没有爬完的): #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/10/15 16:34 # @Author : Sa.Song # @Desc : 爬取买猫眼电影悲伤逆流成河的评论 # @File : maoyan_BS.py # @Software: PyCharm impor…
因为工作的原因,近期笔者开始持续关注一些安全咨询网站,一来是多了解业界安全咨询提升自身安全知识,二来也是需要从各类安全网站上收集漏洞情报. 作为安全情报领域的新手,面对大量的安全咨询,多少还是会感觉无从下手力不从心.周末闲来无事,突发奇想,如果搞个爬虫,先把网络安全类文章爬下来,然后用机器学习先对文章进行分析,自动提取文章主成分关键词,然后再根据实际需求有选择的阅读相关文章,岂不是可以节省很多时间. 如果能提取文章的关键词,还可以根据近期文章的关键词汇总了解总体的安全态势和舆情,感觉挺靠谱. 整…
实现文本分词+在线词云实现工具 词云是NLP中比较简单而且效果较好的一种表达方式,说到可视化,R语言当仍不让,可见R语言︱文本挖掘——词云wordcloud2包 当然用代码写词云还是比较费劲的,网上也有一些成型的软件供大家使用. 本节转载于金砖咖啡馆公众号 我们词云制作工具是目前非常流行的tagxedo,tagxedo对于英文的分词做的很好(废话,英文单词之间有空格),但是对于中文分词做的不好,于是我们需要用到另外一个在线工具http://life.chacuo.net/convertexpor…