本篇论文是2015年的IBM watson团队的. 论文地址: 这是一篇关于QA问题的一篇论文: 相关论文讲解1.https://www.jianshu.com/p/48024e9f7bb22.http://www.52nlp.cn/qa%E9%97%AE%E7%AD%94%E7%B3%BB%E7%BB%9F%E4%B8%AD%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%8A%80%E6%9C%AF%E5%AE%9E%E7%8E%B0     …
Kevin Zakka's Blog About Nuts and Bolts of Applying Deep Learning Sep 26, 2016 This weekend was very hectic (catching up on courses and studying for a statistics quiz), but I managed to squeeze in some time to watch the Bay Area Deep Learning School …
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特征.比如人脸检测常用的Harr特征:行人检测和普通目标检测常用的HOG特征等: 利用分类器进行识别,比如常用的SVM模型. 基于深度学习的目标检测分为两派: 基于区域提名的,如R-CNN.SPP-net…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and…
Rolling in the Deep (Learning) Deep Learning has been getting a lot of press lately, and is one of the hottest the buzz terms in Tech these days. Just check out one of the few recent headlines from Forbes, MIT Tech Review and you will surely see thes…
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning w…
Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intuitive and gentle introduction to deep learning that does not rely heavily on math or theoretical constructs. The first part in this series provided an…
Understanding Convolution in Deep Learning Convolution is probably the most important concept in deep learning right now. It was convolution and convolutional nets that catapulted deep learning to the forefront of almost any machine learning task the…
In the last chapter we learned that deep neural networks are often much harder to train than shallow neural networks. That's unfortunate, since we have good reason to believe that if we could train deep nets they'd be much more powerful than shallow…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks Oct 3, 2016 3:00:00 AM / by Alex Black and Vyacheslav Kokorin Tweet inShare27   This pos…
https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post is based on a tutorial given in a machine learning course at University of Bremen. It summarizes some recommendations on how to get started with machin…
转自:https://www.quora.com/What-are-the-advantages-of-different-classification-algorithms There are a number of dimensions you can look at to give you a sense of what will be a reasonable algorithm to start with, namely: Number of training examples Dim…
Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettmers No CommentsTagged Deep Learning, Deep Neural Networks, Machine Learning,Reinforcement Learning This post is Part 4 of the Deep Learning in a Nutsh…
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near July 27, 2015July 27, 2015 Tim Dettmers Deep Learning, NeuroscienceDeep Learning, dendritic spikes, high performance computing, neuroscience, singula…
Deep Learning and the Triumph of Empiricism By Zachary Chase Lipton, July 2015 Deep learning is now the standard-bearer for many tasks in supervised machine learning. It could also be argued that deep learning has yielded the most practically useful…
Why GEMM is at the heart of deep learning I spend most of my time worrying about how to make deep learning with neural networks faster and more power efficient. In practice that means focusing on a function called GEMM. It’s part of the BLAS (Basic L…
Introduction Deep learning is a recent trend in machine learning that models highly non-linear representations of data. In the past years, deep learning has gained a tremendous momentum and prevalence for a variety of applications (Wikipedia 2016a).…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
边缘智能:按需深度学习模型和设备边缘协同的共同推理 本文为SIGCOMM 2018 Workshop (Mobile Edge Communications, MECOMM)论文. 笔者翻译了该论文.由于时间仓促,且笔者英文能力有限,错误之处在所难免:欢迎读者批评指正. 本文及翻译版本仅用于学习使用.如果有任何不当,请联系笔者删除. 本文作者包含3位,En Li, Zhi Zhou, and Xu Chen@School of Data and Computer Science, Sun Yat…
Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-12-19 13:02:45 This blog is copied from: https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/ Deep learning neural ne…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
A Brief Overview of Deep Learning (This is a guest post by Ilya Sutskever on the intuition behind deep learning as well as some very useful practical advice. Many thanks to Ilya for such a heroic effort!) Deep Learning is really popular these days. B…
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are notoriously difficult to configure and there are a lot of parameters that need to be set. On top of that, individual models can be very slow to train.…