神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素的绝对值之和; L2正则化是指权值向量w中各个元素的平方和然后再求平方根; 一般都会在正则化项之前添加一个系数,这个系数需要用户设定,系数越大,正则化作用越明显. 正则化作用: L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合;L2正则化可以防止…
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的. 从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可.但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化.L1正则化是L0正则化的最优凸近似,比…
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概述 正则化(Regularization),L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者…
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/details/24971995 一.概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 二.区别: 1.L1是模型各个参数的绝对值之和. L2是模型各个参数的平方和的开方值. 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大…
监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据.多么简约的哲学啊!因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小.但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本.所以,我们需要保证模型“简单”的…
机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减小训练样本误差的同时,限制参数的增长,限制参数过多或者过大,从而提高模型的泛化性. 1. L1 正则化 L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值: 2. L2 正则化 L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和: L1范式和L2范式的区别…
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不到万不得已,我们也还是宁可用L2正则,因为L2正则计算起来方便得多... 正则化项不应该以正则化的表面意思去理解,应该翻译为规则化才对! 一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制).L1正则化和L2正则化的说明如下: L1正则化是指权值向量ww中各个元素的绝…
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 L2范数损失函数,也被称为最小平方误差,总的来说,它把目标值$Y_i$与估计值$f(x_i)$的差值的平方和最小化. $$S=\sum_{i=1}^n(Y_i-f(x_i))^2$$ L1损失函数 L2损失函数 鲁棒 不是很鲁棒 不稳定性 稳定解 可能多个解 总是…
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L2正则化的作用 3.1 稀疏模型与特征选择--L1 3.2 L1的直观理解 3.3 L2正则化 4. 如何选择正则化参数? Reference   有关机器学习中的L1.L2正则化,有很多的博文都在说这件事情,大致看了相关的几篇博客文章,做下总结供自己学习.当然了,也不敢想象自己能够把相关的知识都搞…
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范数(lasso),L2范数(ridge) 2.归一化 (Normalization)   2.1归一化的目的 2.1归一化计算方法 2.2.spark ml中的归一化 2.3 python中skelearn中的归一化 知识总结: 1.正则化(Regularization) 1.1 正则化的目的:我的…
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout.L1和L2正则化.早停和权重衰减(Weight Decay),一种是增大训练样本量,比如数据增强(Data Augmentation).这些方法的原理阐述可以看我之前整理的文章<深度学习之正则化方法>. 下面用…
一.损失函: 模型的结构风险函数包括了   经验风险项  和  正则项,如下所示: 二.损失函数中的正则项 1.正则化的概念: 机器学习中都会看到损失函数之后会添加一个额外项,常用的额外项一般有2种,L1正则化和L2正则化.L1和L2可以看做是损失函数的惩罚项,所谓惩罚项是指对损失函数中某些参数做一些限制,以降低模型的复杂度. L1正则化通过稀疏参数(特征稀疏化,降低权重参数的数量)来降低模型的复杂度: L2正则化通过降低权重的数值大小来降低模型复杂度. 对于线性回归模型,使用L1正则化的模型叫…
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力更强: 2)比较 Ridge 和 LASSO 名词 Ridge.LASSO:衡量模型正则化: MSE.MAE:衡量回归结果的好坏: 欧拉距离.曼哈顿距离:衡量两点之间距离的大小: 理解 Ridge.LASSO:在损失函数后添加的正则项不同: MSE.MAE:两种误差的表现形式与对应的 Ridge 和…
很长时间一直没有明白真实的含义,十一期间补充一下这方面的知识. l0 范数是 ||x||0 = xi (xi不等于0)代表非0数字的个数,[1,2,3,4,5]  非0个数为5,[0,1,2,0,3]非0 个数为3 l1范数是||x||1=Σ|xi|  x与0之间的曼哈顿距离,[1,2,3,-2,-1] =1+2+3+2+1 =9,为个数字的绝对值的和. l2范数是||x||2=Σ|xi|^2为x与0之间的欧式距离,[1,2,-3]=1^2+2^2+(-3)^2=1+4+9=14,为各个数字的平…
本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实践中,你也许需要在神秘的L1和L2中做出选择.通常的两个决策为:1) L1范数 vs L2范数 的损失函数: 2) L1正则化 vs L2正则化. 作为损失函数   L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE).总的说来,它是把目标值(\(Y_{i}\))与估计值(\…
规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓『惩罚』是指对损失函数中的某些参数做一些限制.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项α||w…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
装载自:https://blog.csdn.net/u012467880/article/details/52852242 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while r…
在前面的文章中,已经介绍了从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化,本次我们从最大后验概率点估计(MAP,maximum a posteriori point estimate)的角度来理解神经网络中十分重要的weight decay正则化方法. 前面的文章中讲到了梯度下降法可以从最大似然概率估计(ML)的角度来理解,最大似然是一种典型的频率统计方法,还有一种非常不同的贝叶斯统计方法(具体的区别请参考花书).由于贝叶斯统计方法很多时候是复杂不易于处理的,因此我们更想要一种类似…
import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.contrib.layers.l1_regularizer(0.5)(weights)) 5.0 >>> sess.run(tf.keras.regularizers.l1(0.5)(weights)) 5.0 >>> sess.run(tf.keras.regularize…
原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/81074408 前言        很多人不明白为什么要在神经网络.逻辑回归中要在样本X的最前面加一个1,使得 X=[x1,x2,…,xn] 变成 X=[1,x1,x2,…,xn] .因此可能会犯各种错误,比如漏了这个1,或者错误的将这个1加到W·X的结果上,导致模型出各种bug甚至无法收敛.究其原因,还是没有理解这个偏置项的作用啦.        在文章<逻辑回归>…
1.了解知道Dropout原理 深度学习网路中,参数多,可能出现过拟合及费时问题.为了解决这一问题,通过实验,在2012年,Hinton在其论文<Improving neural networks by preventing co-adaptation of feature detectors>中提出Dropout.证明了其能有效解决过拟合的能力. dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络示意图如…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对值损失函数和平方损失函数 区别: 分析: robust: 与L2相比,L1受异常点影响比较小,因此稳健 stable: 如果仅一个点,L1就是一个直线,L2是二次,对于直线来说是多解,因此不稳定,而二次函数只有一个极小值点 L1.L2正则化 为什么出现正则化? 正则化的根本原因是 输入样本的丰度不够…
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作\(ℓ1-norm\)和\(ℓ2-norm\),中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方). L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓惩罚是指对损失函数中的某些参数做一些限制.对于线…
参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/jinping_shi/article/details/52433975 参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/…
L0范数是指向量中非0元素的个数 L1范数是向量中各个元素的绝对值求和 L2范数是指向量的各个元素平方求和然后取和的平方根 机器学习的目的是使学习到的模型不仅对已知的数据而且对未知的数据有很好的预测能力,不同的学习方法会给出不同的模型,当损失函数给定的时候,损失函数的模型的训练误差和测试误差就是学习方法优劣的评估标准,机器学习的最终目的是为了让测试误差达到最小,训练误差的大小对判定问题是不是一个容易学习的问题有意义,但本质上是不重要的.在机器学习的过程中,我们希望学习到一个能够很好的解释已知数据…