R语言中的聚类的使用】的更多相关文章

思路:首先,通过K-means算法将数据点划分为成若K个簇:然后计算每一个数据对象到最近簇的中心距离,来与离群点设置的阈值进行比较,以此来判别该数据对象是否是离群点. 1.读取数据 data<- read.csv(read_file,header = T) 2.K-meas聚类 # 设置聚类数 center_num <- # 调用kmeans km <- kmeans(data,center_num) 3.计算各样本数据到最近中心的距离(nrow=189261是样本记录个数,根据实际情况…
这里的聚类主要用到K-Means和K-Medoide聚类.在进行聚类之前,为了避免不同参数之间量纲不同所造成的影响,先将数据进行(0-1)标准化 # 如参数weight data$weight <- (data$weight-min(data$weight))/(max(data$weight)-min(data$weight)) K-Means算法 1.读取数据 data <- read.csv("data/km/data.csv",header = T) 2.调用kme…
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测.因此,机器学习算法常常被要求应用在平衡数据集上.不平衡分类是一种有监督学习,但它处理的对象中有一个类所占的比例远远大于其余类.比起多分类,这一问题在二分类中更为常见.不平衡一词指代数据中响应变量(被解释变量)的分布不均衡,如果一个数据集的响应变量在不同类上的分布差别较大我们…
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Kmeans聚类 1)基本概念 聚类:无监督分类,对无标签案例进行分类. 半监督学习:从无标签的数据入手,是哦那个聚类来创建分类标签,然后用一个有监督的学习算法(如决策树)来寻找这些类中最重要的预测指标. kmeans聚类算法特点: kmeans算法涉及将n个案例中的每一个案例分配到指定k个类中的一个(…
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语言中有openNLP packages,但是呢,貌似对中文的支持并不好,笔者试了试,发现结果并不如意.但是也算认识了一番,就来介绍一下. 一些内容转载于白宁超老师:OpenNLP:驾驭文本,分词那些事 ---------------------------------------- 一.openNL…
R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y = ,all = ) 函数. #合并ID<-c(1,2,3,4)name<-c("A","B","C","D")score<-c(60,70,80,90)student1<-data.frame(ID,na…
R语言还是有点古老感觉,数据结构没有Python中那么好用.以下简单总结一下R语言中经常使用的几个数据结构. 向量: R中的向量能够理解为一维的数组,每一个元素的mode必须同样,能够用c(x:y)进行创建.如x <- c(1:9). 矩阵: R中的矩阵能够理解为二维数组,每个元素必需要有同样的mode,使用matrix进行创建.matrix的形式为: matrix(vector, nrow=number_of_rows, ncol=number_of_columns, byrow=logica…
R语言中的数据处理包dplyr.tidyr笔记   dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于“tidy”你的数据,这个包常跟dplyr结合使用. 本文将介绍dplyr包的下述五个函数用法: 筛选: filter() 排列: arrange() 选择: select() 变形: mutate() 汇总: summ…
R语言中提供了四类有关统计分布的函数(密度函数,累计分布函数,分位函数,随机数函数).分别在代表该分布的R函数前加上相应前缀获得(d,p,q,r).如: 1)正态分布的函数是norm,命令dnorm(0)就可以获得正态分布的密度函数在0处的值(0.3989)(默认为标准正态分布). 2)同理,pnorm(0)是0.5就是正态分布的累计密度函数在0处的值. 3)而qnorm(0.5)则得到的是0,即标准正态分布在0.5处的分位数是0(在来个比较常用的:qnorm(0.975)就是那个估计中经常用到…
R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心团队”负责开发.R是基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行.R的语法是来自Scheme. R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux).…
R语言中的机器学习包   Machine Learning & Statistical Learning (机器学习 & 统计学习)  网址:http://cran.r-project.org/web/views/MachineLearning.html维护人员:Torsten Hothorn  版本:2008-02-18 18:19:21  翻译:R-fox, 2008-03-18 机器学习是计算机科学和统计学的边缘交叉领域,R关于机器学习的包主要包括以下几个方面:   1)神经网络(N…
R语言中的字符处理 (2011-07-10 22:29:48) 转载▼ 标签: r语言 字符处理 字符串 连接 分割 分类: R R的字符串处理能力还是很强大的,具体有base包的几个函数和stringr包. 1.计算字符串的字符数 nchar()  2. 字符串连接 paste(..., sep = " ", collapse = NULL),其中collpase参数可将多个字符串连接成一个. ===================================== > pa…
1.python 中的 range() 函数生成整数序列,常用于 for 循环的迭代. 示例: 2.R 语言中的 range() 函数返回一个数值向量中的最小值和最大中,常用于求极差. 示例: 按语: R 语言中的 range 函数 python 中相当于 min(x), max(x)…
这几个都是R语言中的特殊值,都是R的保留字, NA:Not available  表示缺失值   用 is.na() 来判断是否为缺失值 NULL:表示空值,即没有内容  用 is.null() 来判断是否为空值 NaN:Not a Number,表示非数值   用 is.nan() 来判断是否为非数值 Inf:Infinite 表示无穷大  用 is.finite()   is.infinite() 来判断是否为无穷大数…
基本数据类型 6种 numaric  如 12, 12.4 integer  如 2L,0L complex  包含实数和虚数 如 3+2i character  要用双引号或者单引号包括起来 如 "a","good" logical  如 TRUE,FALSE raw  是计算机能够直接识别的类型,是二进制的形式保存的数据 NULL  表示空值 NA  表示缺失值 高级数据类型 主要有6种 vector   向量 matrix   矩阵 array    数组 d…
R语言中的几种数据结构 一  R中对象的5种基本类型 字符(character) 整数 (integer) 复数(complex) 逻辑(logical:True/False) 数值(numeric:real numbers) 查看对象类型的命令:class(x) 二 R语言中有如下几种数据结构: 向量 vector()     组内元素必须类型一致,否则将会被强制转换. (1) 创建向量的三种方式: x <- vector("numeric", length = 10)    …
R语言中动态安装库 在一个R脚本中,我们使用了某些library,但是发现运行环境中没有这个library,如果能检测一下有没有这个包,没有就自动安装该多好.而R中非常方便地支持这些,只要联网. 代码如下: site<-"http://cran.r-project.org" if (!require("ggplot2")) { install.package("ggplot2", repos=site) }…
分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法.如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树. 决策树是一种倒立的树结构,它由内部节点.叶子节点和边组成.其中最上面的一个节点叫根节点. 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述.…
R语言中的线性判别分析_r语言 线性判别分析 在R语言中,线性判别分析(Liner Discriminant Analysis,简称LDA),依靠软件包MASS中有线性判别函数lqa()来实现.该函数有三种调用格式: 1)当对象为数据框data.frame时 lda(x,grouping,prior = propotions,tol = 1.0e-4,method,CV = FALSE,nu,-) 2) 当对象为公式Formula时 lda(formula,data,-,subnet,na.ac…
R语言中如何使用最小二乘法 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题.         代码如下: > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y)        结果如下: $coefficients Intercept         X 0.83105…
说明 在前一篇中,我们介绍了 R 语言和 R Studio 的安装,并简单的介绍了一个示例,接下来让我们由浅入深的学习 R 语言的相关知识. 本篇将主要介绍 R 语言的基本操作.变量和几种基本数据类型,好对 R 语言的使用方法有一个基本的概念.通过本篇的学习,你将了解到: R 语言有哪些基本操作 什么是变量,以及如何给变量赋值 R 语言有哪些基本数据类型,如何确定变量的数据类型 R 语言的基本操作 R 语言的默认提示符是 > ,它表示正在等待输入命令,每次输入命令后敲击回车即可执行当前命令. R…
转载:http://blog.csdn.net/duqi_yc/article/details/9817243 目录 Table of Contents 1 正则表达式简介 2 字符数统计和字符翻译 2.1 nchar和length 2.2 tolower,toupper和chartr 3 字符串连接 3.1 paste函数 4 字符串拆分 4.1 strsplit函数 5 字符串查询: 5.1 grep和grepl函数: 5.2 regexpr.gregexpr和regexec 6 字符串替换…
Calinski-Harabasz准则有时称为方差比准则 (VRC),它可以用来确定聚类的最佳K值.Calinski Harabasz 指数定义为: 其中,K是聚类数,N是样本数,SSB是组与组之间的平方和误差,SSw是组内平方和误差.因此,如果SSw越小.SSB越大,那么聚类效果就会越好,即Calinsky criterion值越大,聚类效果越好. 1.下载permute.lattice.vegan包 install.packages(c("permute","lattic…
最近在网上看R的代码,常常看到 x %>% y 的写法. 样子看着像是pipe的用法,搜了一下, 没找到语法的相关说明. 今天突然开窍,想着 %>% 可能不是语言本身支持的语法,可能是某个包自己定义的. 于是查了下dplyr的文档,发现确实有关于%>%的解释,这个符号确实是个pipe符号. 用法为将左边的x作为参数赋予到右边的y函数中. 最初的版本来自magrittr包,顺着dplyr的文档可以找到解释. 将%>%作为R语言的pipe应该已经是业内共识的规范了,能看到很多地方在这样…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
R语言中有几个常用的函数,可以按组对数据进行处理,apply, lapply, sapply, tapply, mapply,等.这几个函数功能有些类似,下面介绍下这几个函数的用法. Apply 这是对一个Matrix或者Array进行某个维度的运算.其格式是: Apply(数据,维度Index,运算函数,函数的参数) 对于Matrix来说,其维度值为2,第二个参数维度Index中,1表示按行运算,2表示按列运算.下面举一个例子: m<-matrix(1:6,2,3) 构建一个简单的2行3列的矩…
今天接手一个重复性工作, 需要手工把产品运营们在excel里写的活动规则, 插入数据库表中.为了减少出错, 提高效率. 再加上最近刚刚学R语言, 就用R练练手, 自动生成mysql的sql语句. 一次性提交. 刚才就是判断一个值是否是整数折腾了一小会儿.后来发现R判断这个很简单. 就是as.integer(money) != as.numeric(money) require("XLConnect")library("WriteXLS")wb <-loadWo…
如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = women)par(mfrow = c(2, 2))plot(fit)par(opar) 为理解这些图形,我们来回顾一下OLS回归的统计假设.(1)正态性(主要使用QQ图) 当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布.正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值…
内容概览   尽管R是一门以数值向量和矩阵为核心的统计语言,但字符串有时候也会在数据分析中占到相当大的份量.   R语言是一个擅长处理数据的语言,但是也不可避免的需要处理一些字符串(文本数据).如何高效地处理文本数据,将看似杂乱无章的数据整理成可以进行统计分析的规则数据,是『数据玩家』必备的一项重要技能.   在编程语言里,文本处理绝对是一大热门,作为数据统计分析最热门的R语言,虽然处理方法没有其他的文本的编程语言丰富,但其处理文本的能力也是非常实用的.特别是在文本数据挖掘日趋重要的背景下,在数…