题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶点,\(E:edge\)边,\(F:flat\)面,对所有维度的所有多边形(多面体)都成立 圆的反演 设反演中心为\(O\),常数为\(k\),若经过\(O\)的直线经过\(P,P'\),且\(OP\times OP'=k\),则称\(P,P'\)关于\(O\)互为反演,其中\(O\)为反演中心,\(k\…
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积的讲解. 三位向量的运算 模长: 即向量长度,\(|\vec{a}|=\sqrt{x_a^2+y_a^2+z_a^2}\). 点积: 标量 \(\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos<\vec{a},\vec{b}>=x_ax_b+y_ay_b+z_a…
题面 传送门 题解 先理一下关于立体几何的基本芝士好了--顺便全都是从\(xzy\)巨巨的博客上抄来的 加减 三维向量加减和二维向量一样 模长 \(|a|=\sqrt{x^2+y^2+z^2}\) 点积 两个向量\(a,b\)的点积还是代表\(a\)在\(b\)上的投影长\(\times b\)的模长,也有$a\cdot b=|a||b|\cos<a,b> \(,坐标上有\)(x_1,y_1,z_1)\cdot (x_2,y_2,z_2)=(x_1x_2,y_1y_2,z_1z_2)$ 叉积…
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加在一起,而是加在每朵花内部. 很裸的一道CDQ分治,CDQ一维,sort一维,TreeArray一维,然后就爆0了...... 把cmp函数改完备之后还是爆0,为什么呢? 看一下这一组样例: 5 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 看得出来正确答案是1 0 0 0 4 但…
cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Modify-Query问题)的分治做法,下面来具体讨论一下: 我们将修改/询问看作在时间轴上的一系列元素,把修改和询问统称为“操作”,并用记号\([l,r]\)表示第\(l\)个操作到第\(r\)个操作的序列. 在时间轴上进行的操作,众所周知有这样的特性:时间早的会影响时间晚的,而反过来不会,这就是c…
洛谷题目传送门 ZJOI的考场上最弱外省选手T2 10分成功滚粗...... 首先要想到30分的结论 说实话Day1前几天刚刚刚掉了SDOI2017的树点涂色,考场上也想到了这一点 想到了又有什么用?反正想不到最大的贡献是怎么推出来的 然后晚上心中怀着九条CNM看完了Solution.pdf 貌似对我这个蒟蒻来说也只有这一题可做了...... 已知书上每个点access的总次数,构造出一个顺序,最大化虚实边的切换总次数 其实如果能发现最优顺序的构造是没有后效性的话,问题便可以进一步简化 考虑每个…
在solve(L,R)中,需要先分治solve两个子区间,再计算左边区间修改对右边区间询问的贡献. 注意,计算额外的贡献时,两子区间各自内部的顺序变得不再重要(不管怎么样左边区间的都发生在右边之前),于是就少了一维 https://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/P3810 此题每个操作既是修改又是查询 对于此题,先按一维排序,在solve(L,R)中先solv…
题面 传送门 题解 妈呀调了我整整一天-- 题解太长了不写了可以去看\(shadowice\)巨巨的 //minamoto #include<bits/stdc++.h> #define R register #define ull unsigned int #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(…
题目大意:有$n$个元素,第$i$个元素有三个属性$a_i,b_i,c_i$,设$f(i)=\sum\limits_{i\not = j}[a_j\leqslant a_i,b_j\leqslant b_i,c_j\leqslant c_i]$,令$d(i)=\sum\limits_{j=1}^n[f(j)=i]$,求$d$ 题解:三位偏序,我用了$CDQ$分治,$a$排序解决,$b$$CDQ$分治,$c$用树状数组 卡点:无 C++ Code: #include <cstdio> #incl…
洛谷题目传送门 CF题目传送门 对于这题,我无力吐槽. 虽然式子还是不难想,做法也随便口胡,但是一些鬼畜边界情况就是判不对. 首先显然二分答案. 对于每一个雨滴,它出现的时刻我们的绳子必须落在它上面.把绳子的上下端点用二元组\((a,b)\)表示,因为三个点\((a,0)(x_i,y_i)(b,h)\)共线,我们可以推出 \[(b-a,h)×(x_i-a,y_i)=0\\(h-y_i)a+y_ib-x_ih=0\] 这说明了\(a,b\)的关系,必须落在一条直线上!它在\((0,0)(0,w)(…