▶ 书上第二章,用一系列步骤优化梯度下降法解线性方程组.才发现 PGI community 编译器不支持 Windows 下的 C++ 编译(有 pgCC 命令但是不支持 .cpp 文件,要专业版才支持),以后 OpenACC - C++ 全盘转向 Ubuntu 中. ● 代码 // matrix.h #pragma once #include <cstdlib> struct matrix { unsigned int num_rows; unsigned int nnz; unsigned…
matlab可以用 -Conjugate gradient -BFGS -L-BFGS 等优化后的梯度方法来求解优化问题.当feature过多时,最小二乘计算复杂度过高(O(n**3)),此时 这一些列优化版梯度下降算法就成为了解优化问题的更优选择. 它们的优点为: 不需要像对原始梯度下降那样手动选择学习速率α 一般比梯度下降收敛速度要快 相应的缺点为:比梯度下降要复杂得多 好在,我们可以直接用matlab内置函数进行计算. 例子如下: 我们需要输入cost function J 及其偏导数:…
目录 目录题目作答1. 建立函数文件ceshi.m2. 这是调用的命令,也可以写在.m文件里3. 输出结果题外话 题目 作答 本文使用MATLAB作答 1. 建立函数文件ceshi.m function [x1,y1,f_now,z] = ceshi(z1,z2) %%%%%%%%%%%%%% 梯度下降法求函数局部极大值@冀瑞静 %%%%%%%%%%%%%%%%%% % 函数:f(x,y)= % 目的:求局部极大值和对应的极大值点坐标 % 方法:梯度下降法 % 理论: % 方向导数:偏导数反应的…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi…
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width…
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度上升法. 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导:概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码). 1 最优化问题 最优化问题是求解函数极值的问题,…
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向:      如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法.梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解.一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的.梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下…
1. 什么是梯度下降法?   梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用于求解参数的局部最小值问题. 2. 梯度下降法的原理 引用维基百科中的一张图 简单来说,梯度下降法就是利用了函数沿梯度方向下降最快的原理来求解极小值,当然也可以沿梯度上升方向求解极大值.具体的原理就不赘述了,可以参考Gradient Decent 的维基百科 梯度下降法. 3. 梯度下降法的求解步骤…
样本文件下载:ex2Data.zip ex2x.dat文件中是一些2-8岁孩子的年龄. ex2y.dat文件中是这些孩子相对应的体重. 我们尝试用批量梯度下降法,随机梯度下降法和小批量梯度下降法来对这些数据进行线性回归,线性回归原理在:http://www.cnblogs.com/mikewolf2002/p/7560748.html 1.批量梯度下降法(BGD) BGD.m代码: clear all; close all; clc; x = load('ex2x.dat'); %装入样本输入特…
梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hinton为自己的研究多次走动人际关系使得其论文出现在了当时的<nature>上,从此GD开始得到业界的关注.这为后面各种改进版GD的出现与21世纪深度学习的大爆发奠定了最重要的基础. PART1:original版的梯度下降法 首先已经有了 对weights和bias初始化过的神经网络计算图,也有一…
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 4.2 梯度下降法 有了上一节的最小二乘法做基准,我们这次用梯度下降法求解w和b,从而可以比较二者的结果. 4.2.1 数学原理 在下面的公式中,我们规定x是样本特征值(单特征),y是样本标签值,z是预测值,下标 \(i\) 表示其中一个样本. 预设函数(Hypothesis Function) 为一个线性函数: \[z_i = x_i \cdot w…
pytorch随机梯度下降法1.梯度.偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势:(2)偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量:(3)梯度是一个矢量,是有大小和方向的,其方向是指多元函数增大的方向,而大小是指增长的趋势快慢. 2.在寻找函数的最小值的时候可以利用梯度下降法来进行寻找,一般会出现以下两个问题局部最优解和铵点(不同自变量的变化趋势相反,一个处于极小,一个处于极大…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\begin{bmatrix}x^{(1)}&x^{(2)}&x^{(3)}&x^{(4)}&x^{(5)}...x^{(n)}\end{bmatrix}\) \(Y=\begin{bmatrix}y^{(1)}&y^{(2)}&y^{(3)}&y^{(4)…
梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底.为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示: 懒得画图了直接用这个展示一下.在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值.每次迭代的过程…
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1)不需要选择α 2)不用多次迭代,一次求解 3)正规方程法不需要归一化处理 缺点:逆矩阵的计算量比较大,尤其当特征变量的维度n很大时:计算逆矩阵的运算量大概是矩阵维度的3次方. 总结:当特征变量维度n较大时(n>=10000),选择梯度下降法:当n值较小时(n<10000),选择正规方程法求解Θ.…
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-batch进行梯度下降 mini-batch大小 = m: 极限情况下,当mini-batch的单个子集样本数量和原集合大小一致都为m时,也就是说对原样本只划分一个子集,这意味着没有划分,此时的梯度下降法为原始的Batch梯度下降 batch方法意味着每次迭代对大量的数据进行处理,这意味着在进行深度神经网…
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt-1 + (1 - β)θt  β指的是加权系数 0<β<1 θt 指的是当前时刻的温度 当β=0.9的时候 1/1-β = 10 所以看到上图的红线其实就是考虑了10天之内的平均气温,其拟合度较好 当β=0.98的时候 1/1-β = 50 所以上图中的绿线是考虑了50天之内的平均气温,于是这种平…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代次数的增加,学习率应该越来越小,因为迭代次数增加后,得到的解应该比较靠近最优解,所以要缩小步长η,那么有什么公式吗?比如:,但是这样做后,所有参数更新时仍都采用同一个学习率,即学习率不能适应所有的参数更新. 解决方案是:给不同的参数不同的学习率 Adagrad法 假设N元函数f(x),针对一个自变量…
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵. 2. 我们有一个响应的响应向量$\mathbf{y}\in \mathbb{R}^n$. 3. 我们将使用线性模型来fit上述数据.因此我们将优化问题形式化成如下形式:$$\arg\min_{\mathbf{w}}f(\math…
应用场景 优化算法经常被使用在各种组合优化问题中.我们可以假定待优化的函数对象\(f(x)\)是一个黑盒,我们可以给这个黑盒输入一些参数\(x_0, x_1, ...\),然后这个黑盒会给我们返回其计算得到的函数值\(f(x_0), f(x_1), ...\).我们的最终目的是得到这个黑盒函数的最优输入参数\(x_i\),使得\(f(x_i)=min\{f(x)\}\).那么我们就会想到,通过不断的调整输入给黑盒的\(x\)值,直到找到满足要求的那个\(x\)值. 我们需要明确的一个信息是,我们…
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等.于是就有了这篇文章. 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent).以及他们在python中的实现. 梯度下降法 梯度下降是…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 这一周的内容是机器学习介绍和梯度下降法.作为入…
一直以为梯度下降很简单的,结果最近发现我写的一个梯度下降特别慢,后来终于找到原因:step size的选择很关键,有一种叫backtracking line search的梯度下降法就非常高效,该算法描述见下图: 下面用一个简单的例子来展示,给一个无约束优化问题: minimize y = (x-3)*(x-3) 下面是python代码,比较两种方法 # -*- coding: cp936 -*- #optimization test, y = (x-3)^2 from matplotlib.p…
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是说x方向上的偏导是 0.4 往y方向走1米,高度上升0.3米,也就是说y方向上的偏导是 0.3 这样梯度方向就是 (0.4 , 0.3),也就是往这个方向走1米,所上升的高度最高. (1*0.4/0.5)*0.4 +(1*0.3…
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个说法是否真正的成立其实很有其它的一些考虑因素在里面,以下给出我个人的一些观点: 1. 首先,在讨论最小二乘法和梯度下降对某数据集进行线性拟合的结果是否相同的问题之前,我们应该需要确保该数据集合的确符合线性模型,如果不符合那么得出的结果将会是非常有意思的, 该种情况在之前的博客中已有介绍,下面给出网址…