TensorFlow & Machine Learning】的更多相关文章

TensorFlow & Machine Learning TensorFlow 实战 传统方式 规则 + 数据集 => 答案 无监督学习 机器学习 神经元网络 答案 + 数据集 => 规则 打标签 / 信号标签 有监督学习 TensorFlow env Anaconda Jupyter Lab Jupyter Notebook Python 3 import tensorflow as ts print("ts = ", ts) refs https://ot.i…
1.apachecn视频(机器学习实战) https://github.com/apachecn/AiLearning https://space.bilibili.com/97678687/#/channel/detail?cid=22486 2.莫烦 https://morvanzhou.github.io/tutorials/machine-learning/sklearn/2-2-general-pattern/ https://github.com/MorvanZhou/tutoria…
[翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 目录 [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 1. 原文摘要 2. 编程模型和基本概念 2…
1.谷歌Cloud Machine Learning平台简介: 机器学习的三要素是数据源.计算资源和模型.谷歌在这三个方面都有强大的支撑:谷歌不仅有种类丰富且数量庞大的数据资源,而且有强大的计算机群提供数据存储于数据运算能力,同时,还研究实现了TensorFlow这个机器学习.深度学习算法库.基于这些背景,谷歌也已经训练出了许多实用的可以应用于商业软件的模型,开发者可以直接调用相应的API来开发自己的商业软件. Google Cloud Machine Learning是一个管理平台,它集合了上…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
去年在北京参加了一次由O'Reilly和Cloudera联合举办的大数据会议Strata Data Conference,并有幸获得了O'Reilly出版的Hands-On Machine Learning with Scikit-Learn and TensorFlow英文书,总体来说,这是一本不错的技术书,很多人也都在推荐这本书.这本书的作者通过具体的例子.很少的理论以及两款成熟的Python框架:Scikit-Learn和TensorFlow,帮助读者掌握构建智能系统所需要的概念和工具.这…
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ tensorflow:http://tensorflow123.com…
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet Machine Learning made for .NET ML.NET is a machine learning framework built for .NET developers. Use your .NET and C# or F# skills to easily integrate custom machine learning…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表. 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了. 在这个过程中,我的名单变成了一个指南,经过一些好友的敦促和鼓励,我决定和大家分享这个指南,或许是一个精简的版本 - 由于长度的原因. 这个指南主要基于Denny Br…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP (反向传播算法) 关于梯度下降的东西,涉及的知识很多,有必要单独一章 Lecture 06 —— mini批量梯度训练及三个加速的方法 (详见链接) 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降(SGD)学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大…
INDEX Introducing ML Framing Fundamental machine learning terminology Introducing ML What you learn here will allow you, as a software engineer, to do three things better. First, it gives you a tool to reduce the time you spend programming. Second, i…
Awesome系列 Awesome Machine Learning Awesome Deep Learning Awesome TensorFlow Awesome TensorFlow Implementations Awesome Torch Awesome Computer Vision Awesome Deep Vision Awesome RNN Awesome NLP Awesome AI Awesome Deep Learning Papers Awesome 2vec Deep…
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few years, I have tried Linux programming, device driver development, android application development and RF SOC development. Thus, "data analysis become my…
https://blog.csdn.net/luyao_cxy/article/details/82383091 转载:https://blog.csdn.net/qq_27297393/article/details/82284384 机器学习 一.人工智能.机器学习与深度学习 人工智能        机器学习               经典机器学习               基于神经网络的机器学习                      浅层学习                    …
AlphaGo: Mastering the ancient game of Go with Machine Learning Posted by David Silver and Demis Hassabis, Google DeepMind Games are a great testing ground for developing smarter, more flexible algorithms that have the ability to tackle problems in w…
https://emerj.com/ai-sector-overviews/machine-learning-in-finance/ Machine learning has had fruitful applications in finance well before the advent of mobile banking apps, proficient chatbots, or search engines. Given the high volume, accurate histor…
最近一直在开发Orchestra Pipeline System,歇两天翻译点文章换换气.这篇文章是无意间看到的,自己从2015年就开始关注机器学习在视效领域的应用了,也曾利用碎片时间做过一些算法移植的工作,所以看到这篇文章的时候很有共鸣,遂决定翻译一下. 原文链接:https://www.fxguide.com/fxfeatured/new-machine-learning-server-for-deep-learning-in-nuke/ 正文: Recent years have seen…
Machine Learning Algorithms Linear Regression and Gradient Descent Local Weighted Regression Algorithm Logistic Regression Generative Model vs Discriminative Model Naive Bayes and Laplace Smoothing k-Nearest Neighbors Algorithm Decision Tree Algorith…
声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Learning>的英文原文(原文链接).该翻译都是本人(tomqianmaple@outlook.com)本着分享知识的目的自愿进行的,欢迎大家交流! 关键词:探索和利用.马尔科夫决策过程.Q-Learning.策略学习.深度增强学习. [Update 9/2/17] 现在本系列教程已经出了电子书了,可以…
<Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM 前面在写NumPy文章的结尾处也有提到,本来是打算按照<机器学习实战 / Machine Learning in Action>这本书来手撕其中代码的,但由于实际原因,可能需要先手撕SVM了,这个算法感觉还是挺让人头疼,其中内部太复杂了,涉及到的数学公式太多了,也涉及到了许多陌声的名词,如:非线性约束条件下的最优化.KKT条件.拉格朗日对偶.最大间隔.最优下界.核函数等等,天书或许.可…
<Machine Learning in Action>-- 剖析支持向量机,优化SMO 薄雾浓云愁永昼,瑞脑销金兽. 愁的很,上次不是更新了一篇关于支持向量机的文章嘛,<Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM.虽然效果还算不错,数据集基本都能够分类正确,模型训练效率的话也还说的过去,但这是基于我们训练样本数据集比较少.迭代次数比较少的前提下. 假如说我们数据集比较大,而且还需要迭代不少次数的话,上一篇文章中使用到的SMO算法…
<Machine Learning in Action>-- 小朋友,快来玩啊,决策树呦 在上篇文章中,<Machine Learning in Action>-- Taoye给你讲讲决策树到底是支什么"鬼"主要讲述了决策树的理论内容,介绍了什么决策树,以及生成决策树时所需要优先选取的三种决策标准.有学习的过SVM,或阅读过Taoye之前写的几篇SVM内容的文章可以发现,决策树相对于SVM来讲要简单很多,没有太多且复杂的公式推导. 我们在把之前的内容稍微回顾下:…
说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了,似乎涉及到Latex就会多多少少排版错乱???暂时也没什么比较好的解决办法,如果有朋友知道的可以联系下Taoye,长时间用Markdown + Latex码文已成习惯了,关于机器学习文章的内容,更好的阅读体验,大家可以跳转至我在Cmd Markdown平台发布的内容,也可前往我的掘金主页,阅读体验都…
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K-近邻(KNN).贝叶斯分类,读者可根据以下内容自行"充电"(持续更新中): <Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM: https://www.zybuluo.com/tianxingjian/note/1755051…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…