https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need to learn machine learning? Why we need to learn ML Many people think: Wow!!! AI is so powerful right now! You see AlphaGO? AI is going to replace human…
Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
Method Feature(s) Sample(s) Result Value/Feature Permutation Importance 1 all validation samples Single Scale Partial Dependence Plots 1~2 all validation samples Vector(reasults vs feature) SHAP Values N individual sample 每个feature对当前结果的贡献(相对于baselin…
Why ML stategy 怎么提高预测准确度?有了stategy就知道从哪些地方入手,而不至于找错方向做无用功. Satisficing and Optimizing metric 上图中,running time <= 100ms 就是satisficing,accuracy 就是 optimazing. Dev set and test set should be from same distribution. 传统的traing set/ dev set / test set 比例是6…
1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取对新的数据样本的理想输出. Active learning 提供的这种交互机制尤其适用于 unlabeled data 有很多,且手工标注的代价十分高昂的场合.显然这种交互式地向用户询问以获取label,使得原始非监督问题变成了一种迭代式的监督学习(iterative supervised lear…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
About me In my spare time, I love learning new technologies and going to hackathons. Our hackathon project Pantrylogs using Artificial Intelligence was selected as one of the 10 Microsoft Imagine Cup UK finalists. I’m interested in learning more abou…
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe…
5 Techniques To Understand Machine Learning Algorithms Without the Background in Mathematics Where does theory fit into a top-down approach to studying machine learning? In the traditional approach to teaching machine learning, theory comes first req…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
About this Course Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly i…