传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二进制中1的个数是3的倍数.问长度为k的满足条件的序列有多少种? 题解:dp状态定义为,在前i个数中以aj为结尾的方案数量 则转移为 因为是求和的转移,可以用矩阵快速幂将O(n)的求和加速为log级别 接下来的问题就是然后填系数了,因为要累加,所以只要时,我们将矩阵的第i行第j列的系数填为1即可 目的…
Xor-sequences CodeForces - 691E 题意:在有n个数的数列中选k个数(可以重复选,可以不按顺序)形成一个数列,使得任意相邻两个数异或的结果转换成二进制后其中1的个数是三的倍数.求可能形成的不同数列个数(只要选出的数列中,任意两个元素在原序列中的位置不同,就算作不同的序列,比如在原数列[1,1]中选1个,那么第一个1和第二个1要分开算). 方法: 很容易列出dp方程: dp[k][i]表示取了k个,最后一个在第i位.a[i][j]表示i和j异或结果转换成二进制后1的个数…
题目链接:https://vjudge.net/contest/333591#problem/L 题意:用m个字符构成长度为n的串,其中存在形如“ab”(表示a后不能放置b)的条件约束,问共有多少种构造方法. 思路:矩阵快速幂,建立一个数组num[53][53],num[i][j]=1表示i号字符的下一个字符可以是j号字符,num[i][j]=0表示i号字符下一个字符不能为j号字符,计算该矩阵的(n-1)次幂,再与模为sqrt(m)的m维向量相乘,算出所得向量的所有分量的和,即为答案. 反思:唯…
题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h> using namespace std; typedef __int64 LL; struct data { LL mat[][]; }; LL mod = 1e9 + ; data operator *(data a , data b) { data res; ; i <= ; ++i) { ;…
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | fn-1 | */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef __int64 LL; LL mod = 1e9 + ; struct data {…
Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec Problem Description Input The input contains a single line consisting of 2 integers N and M (1≤N≤10^18, 2≤M≤100). Output Print one integer, the total n…
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k}_{i-k})\)mod\(P\),给出\(f_{1}...f_{k-1}\)和\(f_{n}\),求\(f_{k}\),其中\(P\)等于998244353 题解 3是998244353的离散对数,所以\(f^{b_1}_{i-1} \equiv 3^{h_i*b_1}(modP)\),怎么求离散…
https://codeforces.com/contest/1117/problem/D 题意 有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组成n颗宝石有多少种方法 题解 数据很大:找规律or矩阵快速幂 转移方程: dp[i]=dp[i-1]+dp[i-m] 因为n<=1e18可以用矩阵快速幂 构造矩阵如图: \[ \left[ \begin{matrix} f[i-1] & f[i-2] & \cdots & f[i…
传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem,现在需要N个gem,可以选择一定的magic gem,指定每一个分裂或不分裂,问一共有多少种方案 两种分裂方案不同当且仅当magic gem的数量不同,或者分裂的magic gem的索引不同. 思路: 1.首先从dp的角度出发 设F(i)为最终需要i个gem的方案数,容易得到递推式: (总方案数 = 最右边…
CodeForces 185A. Plant (矩阵快速幂) 题意分析 求解N年后,向上的三角形和向下的三角形的个数分别是多少.如图所示: N=0时只有一个向上的三角形,N=1时有3个向上的三角形,1个向下的三角形,N=2,有10个向上的三角形和6个向下的三角形. 根据递推关系,设an为第N年向上的三角形个数,bn为第N年向下的三角形个数.初始条件为 a0 = 1, b0 = 0; 递推关系式: an = 3an-1 + bn-1 bn = 3bn-1 + an-1 可以构造出一下矩阵 然后用矩…
http://codeforces.com/contest/719/problem/E 题目大意:给你一串数组a,a[i]表示第i个斐波那契数列,有如下操作 ①对[l,r]区间+一个val ②求出[l,r]区间的和. 定义区间的和为该区间内每个a[i]所对应的斐波那契数列的和. 思路:线段树保存区间val,和区间更新,用矩阵快速幂求解复杂度是m*logn*logk //看看会不会爆int!数组会不会少了一维! //取物问题一定要小心先手胜利的条件 #include <bits/stdc++.h>…
题目链接 http://codeforces.com/problemset/problem/691/E 题意 给出一个长度为n的序列,从其中选择k个数 组成长度为k的序列,因为(k 有可能 > n) 那么数字是可以重复选择的 使得 aj 属于 a1 -> ak-1 满足 aj ^ aj + 1 中二进制表示中1的个数是3的倍数 思路 很显然 当k == 1的时候,不存在 aj 属于 a1 -> a0 那么 自然是满足的 也就是说 k == 1 的时候 答案就是n 那么 k == 2 的时…
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y-1)或者(x+1,y)或者(x+1,y+1)三个位子之一. 现在一共有N段线段,每条线段都是平行于X轴的.我们如果此时x是在这段线段之内的话,我们此时走到的点(x,y)需要满足0<=y<=Ci. 现在保证一段线段的终点,一定是下一段线段的起点.问我们从起点走到终点的行走方案数. 题解:简单的dp+…
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard output You are given n integers a1,  a2,  …,  an. A sequence of integers x1,  x2…
Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得到的期望收益最大. 因此我们设 \(dp_i\) 表示还剩 \(i\) 秒并且当前没有升级过的最大收益. 那么有 \(dp_i=\max\limits_{j}\{dp_{i-1}(1-p_j)+X(i-1)p_j+p_ja_j\}\),其中 \(X=\max\{b_jp_j\}\). 稍微解释一下上面的转移…
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步到达 \(j\) 点的概率,那显然有 \(dp_{i+1,k}\leftarrow dp_{i,j}\times\dfrac{1}{\delta^+(j)}\)(\(j,k\) 之间有边相连),矩阵快速幂优化一下即可,最终答案即为 \(f_{k-1,n}\),时间复杂度 \(n^3\log k\). 接下来…
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求一个fib数根据矩阵的乘法结合率,A*C+B*C=(A+B)*C; 这样可以通过线段树维护某个区间2*1矩阵的和. 2.时限卡的紧...用我的矩阵乘法板子TLE了.所以把板子里边的三重循环改成手工公式... 3.注意(a+b)%mod.这种,改成if(a+b>=mod)a+b-mod这种形式时间几乎…
思路:刚开始 n个元素,a[i][j]代表以i开头,j结尾的二元组符合条件的有多少 这是等于长度为2的数量 长度为3的数量为a*a,所以长度为n的数量是a^(k-1) 然后就是矩阵快速幂,然而我并不能发现这道题是矩阵快速幂,没办法,太弱了 注:这个模板是从Q神的AC代码里扒下来的,仰慕Q神 #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<iost…
矩阵快速幂的题要多做 由题可得 g[n]=A*g[n-1]+B 所以构造矩阵  { g[n] }    =  {A   B}  * { g[n-1]} {   1   }         {0   1}     {    1    } 然后矩阵快速幂就好 矩阵快速幂的题要多做,多构造矩阵 注:其实这个题可以直接等比数列求求和,单数矩阵快速幂对于这类题更具有普遍性 #include <cstdio> #include <iostream> #include <ctime>…
Darth Vader and Tree 感觉是个很裸的矩阵快速幂, 搞个100 × 100 的矩阵, 直接转移就好啦. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int,…
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$d_i$由小到大排序 设$f_i$表示加上$1\sim i-1$的所有边走$d_i$次后各点间的联通情况 $G$表示只连$1\sim i-1$的边的邻接矩阵 这些我们可以用一个$01$邻接矩阵来存储 则有 $f_i=f_{i-1}*G^{d_i-d_{i-1}}$ 这很明显是一个矩阵快速幂的过程 之…
思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)=A(n),是不是有点像等比?然后我们得到T^(n-1)*A(1)=A(n),所以我们可以通过矩阵快速幂快速计算左边的T^n-1这个式子,最后再和A1相乘,那么第一个数字就是答案了. 代码: #include<set> #include<cstring> #include<cstd…
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, please calculate fn modulo 1000000007 (109 + 7). Input The first line contains two integers x and y (|x|, |y| ≤ 109). The second line contains a single i…
You are given n integers a1,  a2,  ...,  an. A sequence of integers x1,  x2,  ...,  xk is called a "xor-sequence" if for every 1  ≤  i  ≤  k - 1 the number of ones in the binary representation of the number xi  xi  +  1's is a multiple of 3 and …
There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathematician Leonardo Fibonacci. Of course, such important anniversary needs much preparations. Dima is sure that it'll be great to learn to solve the followi…
E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Okabe likes to take walks but knows that spies from the Organization could be anywhere; that's why he wants to k…
题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, please calculat…
  D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Consider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x)) for n > 0. For…
E. Okabe and El Psy Kongroo     Okabe likes to take walks but knows that spies from the Organization could be anywhere; that's why he wants to know how many different walks he can take in his city safely. Okabe's city can be represented as all points…
传送门 题意 给定序列,从序列中选择k(1≤k≤1e18)个数(可以重复选择),使得得到的排列满足\(x_i与x_{i+1}\)异或的二进制表示中1的个数是3的倍数.问长度为k的满足条件的序列有多少种? 分析 看了tags发现有关矩阵就跟最近做的矩阵快速幂联系起来了,假如ai与aj异或的数满足条件,可以看作i到j练了一条边,再异或后的数到ak也连边,那么如果找长度为3的序列,(ai,aj,ak)一定满足条件 我们可以 1.先\(O(n^2)\)预处理出k=2情况下的邻接矩阵 2.对矩阵求k-1次…