Hnoi2014 世界树 Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石. 世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种族的编号分别从1到n,分别生活在编号为1到n的聚居地上,种族的编号与其聚居地的编号相 同.有的聚居地之间有双向的道路相连,道路的长度为1.保证连接的方式会形成一棵树结构,即所有的聚居地之间可以互…
Description 题库链接 给出一棵 \(n\) 个节点的树, \(q\) 次询问,每次给出 \(k\) 个关键点.树上所有的点会被最靠近的关键点管辖,若距离相等则选编号最小的那个.求每个关键点管辖多少个节点. \(1\leq n,q,\sum k\leq 300000\) Solution 构出虚树后,我们能用简单的树形 \(dp\) 求出每个点离他最近的关键点.大体是做两遍 \(dfs\) .第一遍用儿子更新父亲,第二遍用父亲更新儿子. 处理好这个之后,对于虚树上每个点.他的子树有两种…
题面 首先建虚树 DFS求虚树上每个点所属的点和到它所属点的距离,然后在=考虑虚树所有的边(对应原树一条链).如果两个端点所属节点不同就倍增出分界点统计答案,否则不用管(之后会统计到的):注意根节点特殊讨论. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,K=,inf=1e9; int T,n,m,t1,t2,cnt,tot,top; int p[N],noww[…
3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1084  Solved: 611[Submit][Status][Discuss] Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石.世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种…
3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 520  Solved: 300[Submit][Status][Discuss] Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石.    世界树的形态可以用一个数学模型来描述:世界树中有n个种…
3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 645  Solved: 362[Submit][Status][Discuss] Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石.     世界树的形态可以用一个数学模型来描述:世界树中有n个…
[WC2018]通道(边分治,虚树,动态规划) 题面 UOJ 洛谷 题解 既然是三棵树,那么显然就是找点什么东西来套个三层. 一棵树怎么做?入门dp. 两棵树?假设在第一棵树中的深度为\(dep\).在第一棵树中枚举\(LCA\),因为两点之间距离可以转化为两点深度和减去两倍\(LCA\)的深度,而已知当前的\(LCA\)是谁了.那么在第二棵树上的每个节点\(u\)下挂一个\(u'\),边权为\(dep[u]\),那么枚举\(LCA\)之后答案就是在当前\(LCA\)的不同子树中的两点\((x\…
[CF809E]Surprise me!(动态规划,虚树,莫比乌斯反演) 题面 洛谷 CodeForces 翻译: 给定一棵\(n\)个节点的树,每个点有一个权值\(a[i]\),保证\(a[i]\)是一个\(1..n\)的排列. 求\[\frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n\varphi(a_i*a_j)·dist(i,j)\] 其中,\(\varphi(x)\)是欧拉函数,\(dist(i,j)\)表示\(i,j\)两个节点在树上的距离. 题解 神题…
虚树可以看做是对树形动态规划的一种求解优化 对于需要求答案的点p,只保留对答案有影响的节点,从而减少时间 BZOJ2286 dp[i]=min(val[i],Σdp[j](j为i的儿子)),val[i]表示将i和根节点分离的代价 方程为什么这么写呢?val也就是从当前i到根节点的边权的最小值 为了让代价最小,最后的dp[root]就是答案了,树形dp是先递归调用到根然后回溯的过程中求值,回溯到根节点的时候答案就显然了 我们可以只用询问点及他们的LCA来建一颗新树,我们暂且称其为虚树,然后在虚树上…
[BZOJ3572][Hnoi2014]世界树 Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石.世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种族的编号分别从1到n,分别生活在编号为1到n的聚居地上,种族的编号与其聚居地的编号相同.有的聚居地之间有双向的道路相连,道路的长度为1.保证连接的方式会形成一棵树结构,即所有…
[CF613D]Kingdom and its Cities(虚树,动态规划) 题面 洛谷 CF 翻译洛谷上有啦 题解 每次构建虚树,首先特判无解,也就是关键点中存在父子关系. 考虑\(dp\),设\(f[i]\)表示解决\(i\)子树以内的最小点数 再用一个数组\(g[i]\)表示\(i\)的子树中还未阻断的点数 \(f[u]=\sum f[v],g[u]=\sum g[v]\) 考虑转移, 如果\(u\)不是关键点,并且\(v>1\) 那么,当前点必须放置,\(f[u]+=1,g[u]=0\…
[BZOJ3611]大工程(虚树,动态规划) 题面 BZOJ Description 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a,b 的最短路径. 现在国家有很多个计划,每个计划都是这样,我们选中了 k 个点,然后在它们两两之间 新建 C(k,2)条 新通道. 现在对于每个计划,我们想知道: 1.这些新通道的代价和 2.这些新通道中代价最小的是多…
[BZOJ2286]消耗战(虚树,动态规划) 题面 BZOJ Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿.由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小. 侦查部门…
题目: Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石. 世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种族的编号分别从1到n,分别生活在编号为1到n的聚居地上,种族的编号与其聚居地的编号相同.有的聚居地之间有双向的道路相连,道路的长度为1.保证连接的方式会形成一棵树结构,即所有的聚居地之间可以互相到达,并且不会出现…
题目 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石. 世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种族的编号分别从1到n,分别生活在编号为1到n的聚居地上,种族的编号与其聚居地的编号相同.有的聚居地之间有双向的道路相连,道路的长度为1.保证连接的方式会形成一棵树结构,即所有的聚居地之间可以互相到达,并且不会出现环.定义两个聚居地之间的距…
[Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1921  Solved: 1019[Submit][Status][Discuss] Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持续运转的根本基石.世界树的形态可以用一个数学模型来描述:世界树中有n个种族,种族的编号分…
<虚树+树型DP> HNOI2014世界树 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long LL; const int MAXN = 3e5 + 10; inline int in() { int x = 0, fla…
http://www.lydsy.com/JudgeOnline/problem.php?id=3572 思路:建立虚树,然后可以发现,每条边不是同归属于一端,那就是切开,一半给上面,一半给下面. #include<algorithm> #include<cstdio> #include<cmath> #include<cstring> #include<iostream> #define N 300005 ],next[N*],first[N]…
题目大意: 给一棵树,每次给出一些关键点,对于树上每个点,被离它最近的关键点(距离相同被标号最小的)控制 求每个关键点控制多少个点 分析: 虚树+dp dp过程如下: 第一次dp,递归求出每个点子树中关键点到它距离最小值 第二次dp,用第一次的信息,从上往下转移,求出每个点到所有关键点中到它距离最小值 这里兼容性讨论一下,发现可以不用存次大值,因为若最小值来自要更新的子树,则子树中点到上面的点的距离一定不优 前两次dp求出了虚树中1,2类点被谁控制 第三次dp,对于每条边,找到断点,细节见代码…
传送门 题意: 一棵树,多次询问,给出$m$个点,求有几个点到给定点最近 写了一晚上... 当然要建虚树了,但是怎么$DP$啊 大爷题解传送门 我们先求出到虚树上某个点最近的关键点 然后枚举所有的边$(f,x)$,讨论一下边上的点的子树应该靠谁更近 倍增求出分界点 注意有些没出现在虚树上的子树 注意讨论的时候只讨论链上的不包括端点,否则$f$的子树会被贡献多次 学到的一些$trick:$ 1.$pair$的妙用 2.不需要建出虚树只要求虚树的$dfs$序(拓扑序)和$fa$就可以$DP$了 注意…
题目大意 给你\(k\)个点,让这一些点和一号节点断开,删去某一些边,求最小的删去边权之和. 做题的心路历程 做了\(HG\)昨天的模拟赛,深深感觉到了窝的菜,所以为了\(A\)掉T1这一道毒瘤,窝就来学习一下虚树. 学到一半,感觉虚树的原理还是比较简单的,就是把需要求的点建一棵和原来的树长得十分相似的一棵树,然后在这个树上做\(DP\). 但是,我写到完了,就一直T.也不知道为什么. 然后删掉了所有的memset就瞬间跑了出来.原来是因为自己太怂了... 题解 首先如果考虑最简单的树形\(DP…
反正肯定要建虚树,考虑建完之后怎么做 先随便dp一下算出来距离某点最近的询问点mi[x](因为有的虚树上的点它不是询问点嘛) 那我们对于某条链x到fa[x]上的非虚树上的点(包括他们的非虚树上的孩子),要么把它分给mi[x],要么分给mi[fa[x]] 我找到这个中间点以后,在原树上倍增跳过去,算他的size 这个分法是以$\frac{len[mi[x]]+len[x]+len[mi[fa[x]]]}{2}$再加加减减一些细节决定的(len[x]表示x到fa[x]的链的长度) 除此之外,每个在虚…
正解:虚树 解题报告: 传送门! 首先看到这种就要想到虚树这个是毫无疑问的QwQ 建虚树什么的都可以循规蹈矩地做,不说辣,具体可以看下虚树学习笔记什么的看下板子 但是建好虚树之后怎么搞还是有点儿讲究,所以专门开个题解港下(所以为什么好多人拿这个当做虚树入门题什么的昂,,,大概我太菜辣所以只有理解了半天趴QAQ(我我我我在网上找题解看到好多都是说,"首先求值很容易balabala",,,就很绝望,,,可能真的我太菜辣QAQ 首先读入dfs然后建虚树什么的跳过,直接到计算答案的地方 这里主…
正解:虚树+树上dp 解题报告: 传送门! 首先解释一下题意趴,,,语文70pts选手已经开始看不懂题辣QAQ 大概就是个给一个图,求独立集方案,且保证图是联通的,边的数量最多只比点多10 首先思考如果边的数量=点的数量-1,也就是一棵树的时候怎么搞? 直接树上dp就好,f[i][0/1]:选/不选第i个点方案数,转移就f[i][0]=∏(f[son][0]+f[son][1]),f[i][1]=∏f[son][0] 然后考虑多的边怎么搞呢 从上面那个思路自然而然地可以考虑到,可以暴力枚举非树边…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3572 关于虚树:https://www.cnblogs.com/zzqsblog/p/5560645.html 构造方法: 先把关键点按 dfs 序排序,然后依次插入树中: 插入当前点 cr 的时候,求 lca = get_lca( cr , sta[top] ) :如果 dep[ sta[top] ] >= dep[lca] ,就一直弹栈: 弹栈结束后,看看现在的 sta[ top ]…
传送门 虚树入门题? 好难啊. 在学习别人的写法之后终于过了. 这道题dp方程很好想. 主要是不好写. 简要说说思路吧. 显然最优值只能够从子树和父亲转移过来. 于是我们先dfs一遍用儿子更新父亲,然后再dfs一遍用父亲更新儿子. 这样搞完之后可以统计出每个点所属的管辖点. 然后统计. 但这样单次跑是O(n)O(n)O(n)的不优秀. 考虑优化算法的时间复杂度. 注意到所有管辖点加起来只有O(n)O(n)O(n)个. 因此我们每次只把跟管辖点有关的点连起来建出一棵虚树. 然后每次就在上面跑带边权…
https://www.lydsy.com/JudgeOnline/problem.php?id=3572 http://hzwer.com/6804.html 写的时候参考了hzwer的代码,不会写的题读一遍代码就好了(所以菜). 虚树还是老一套,树形dp的部分比较有趣. 通过dfs两遍(从下往上总结一遍,从上往下再一遍)把每个点所归属的点找到. 对于那些没有出现在虚树中的点,对通过每条虚树上的边进行总结找到每两个点之间没有统计的点的归属(这个归属一定为bel[x]或bel[y]). 通过倍增…
https://www.lydsy.com/JudgeOnline/problem.php?id=2286 wa了两次因为lca犯了zz错误 这道题如果不多次询问的话就是裸dp. 一棵树上多次询问,且总共询问的点数较小(能够承受得住加个logn的复杂度(常数就不管了,按理说还要*2吧))可以用虚树来处理. 虚树就是对每次询问将有用的点建一棵树,每次询问查询m个点,则这棵树最多m*2个点(太优秀了). 这个虚树的建立过程是用栈维护一条链,每加入一个点就把她和前一条链的叶子节点的lca和这个点本身加…
[题意]给定n个点的树,m次询问,每次给定ki个特殊点,一个点会被最近的特殊点控制,询问每个特殊点控制多少点.n,m,Σki<=300000. [算法]虚树+倍增 [题解]★参考:thy_asdf 对询问建立虚树,然后DFS统计虚树上每个点被哪个点控制,记为belong[x]. 统计的方法是从下往上DFS得到x来自x子树的控制点,再从上往下DFS得到x来自非x子树的控制点. 令D(x,y)表示点x和点y之间的路径长度,比较x的不同控制点y的方式是取D(x,y)的最小值(相同时比较编号). 依此考…
题面 luogu 题解 数据范围已经告诉我们是虚树了,考虑如何在虚树上面\(dp\) 以下摘自hzwer博客: 构建虚树以后两遍dp处理出虚树上每个点最近的议事处 然后枚举虚树上每一条边,考虑其对两端点的答案贡献 可以用倍增二分出分界点 如果a,b的分界点为mid,a,b路径上a的第一个儿子为x 则对a的贡献是size[x]-size[mid] 对b的贡献是size[mid]-size[b] 还要算上没被考虑的点 Code // luogu-judger-enable-o2 #include<b…