hive小文件合并设置参数】的更多相关文章

Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加.   小文件带来的问题   关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件…
当Hive的输入由非常多个小文件组成时.假设不涉及文件合并的话.那么每一个小文件都会启动一个map task. 假设文件过小.以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费.甚至发生OutOfMemoryError错误. 因此,当我们启动一个任务时,假设发现输入数据量小但任务数量多时.须要注意在Map前端进行输入小文件合并操作. 同理.向一个表写数据时,注意观察reduce数量.注意输出文件大小. 1. Map输入小文件合并 #每一个Map处理的最大输入文件大小(256MB…
文件数目过多,会给HDFS带来压力,并且会影响处理效率,可以通过合并Map和Reduce的结果文件来消除这样的影响: set hive.merge.mapfiles = true ##在 map only 的任务结束时合并小文件 set hive.merge.mapredfiles = false ## true 时在 MapReduce 的任务结束时合并小文件 set hive.merge.size.per.task = 256*1000*1000 ##合并文件的大小 set mapred.m…
小文件是如何产生的: 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量的暴增 数据源本身就包含有大量的小文件 reduce个数越多,生成的小文件也越多 小文件的危害: 从HIVE角度来看的话呢,小文件越多,map的个数也会越多,每一个map都会开启一个JVM虚拟机,每个虚拟机都要创建任务,执行任务,这些流程都会造成大量的资源浪费,严重影响性能 在HDFS中,每个小文件约占150byte,如果小文件过多则会占用大量的内存.这样namenode内存容量严重制约了集群的发展 小文件的解决…
本文首发于公众号:五分钟学大数据 小文件产生原因 hive 中的小文件肯定是向 hive 表中导入数据时产生,所以先看下向 hive 中导入数据的几种方式 直接向表中插入数据 insert into table A values (1,'zhangsan',88),(2,'lisi',61); 这种方式每次插入时都会产生一个文件,多次插入少量数据就会出现多个小文件,但是这种方式生产环境很少使用,可以说基本没有使用的 通过load方式加载数据 load data local inpath '/ex…
最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有小文件. 我去hdfs目录查看了一下该目录: 发现确实有很多小文件,有480个小文件,我觉得我找到了问题所在,那么合并一下小文件吧: insert into test select * from table distribute by floor (rand()*5); 这里使用distribute…
小文件合并是针对文件上传到HDFS之前 这些文件夹里面都是小文件 参考代码 package com.gong.hadoop2; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import or…
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成         缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包.     SequeuesF…
①自定义按某列排序,二次排序 writablecomparable中的compareto方法 ②topk a利用treemap,缺点:map中的key不允许重复:https://blog.csdn.net/u010660276/article/details/50967054 b封装mapper<key,value>中的key实现writablecompareable接口,实现排序https://blog.csdn.net/lzm1340458776/article/details/43228…
SequeceFile是Hadoop API提供的一种二进制文件支持.这种二进制文件直接将<key, value>对序列化到文件中.可以使用这种文件对小文件合并,即将文件名作为key,文件内容作为value序列化到大文件中.这种文件格式有以下好处: 1). 支持压缩,且可定制为基于Record或Block压缩(Block级压缩性能较优)2). 本地化任务支持:因为文件可以被切分,因此MapReduce任务时数据的本地化情况应该是非常好的.3). 难度低:因为是Hadoop框架提供的API,业务…