一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪. PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性.                                      …
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器.支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次规划的问题,其学习算法就为求解凸二次规划的最优化算法序列最小最优化算法(SMO). 关键词:二类分类:间…
支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: def __init__(self, dataSet, labels, C, toler, kernel_option): self.train_x = dataSet # 训练特征 self.train_y = labels # 训练标签 self.C = C # 惩罚参数 self.toler…
一.支持向量机 (SVM)算法的原理 支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.它是将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面.在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化.假定平行超平面间的距离或差距越大,分类器的总误差越小. 对于线性可分的支持向量机求解问题实际上可转化为一个带约束条件的最优化求解问题: 推理过程:      结果:…
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须…
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo…
一.KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法. 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类. 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合.KNN算法不仅可以用…