引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我…
在本章中,我们将讨论如何切割和丢弃日期,并获取Pandas中大对象的子集. Python和NumPy索引运算符"[]"和属性运算符".". 可以在广泛的用例中快速轻松地访问Pandas数据结构.然而,由于要访问的数据类型不是预先知道的,所以直接使用标准运算符具有一些优化限制.对于生产环境的代码,我们建议利用本章介绍的优化Pandas数据访问方法. Pandas现在支持三种类型的多轴索引; 这三种类型在下表中提到 - 编号 索引 描述 1 .loc() 基于标签 2…
对于一个没有字段名标题的数据,如data.csv 1.获取数据内容.pandas.read_csv("data.csv")默认情况下,会把数据内容的第一行默认为字段名标题. import pandas as pd # 读取数据 df = pd.read_csv("../data/data.csv") print(df) 为了解决这个问题,我们添加"header=None",告诉函数,我们读取的原始文件数据没有列索引.因此,read_csv为自动加…
Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], columns=['A','B','C','D','E']) df1 df1 = df.reindex(index=dates[0:4], columns=['A','B','C','D']+['E']) df1 df1 = df.reindex(index=dates[0:4], columns=li…
Series和Datafram索引的原理一样,我们以Dataframe的索引为主来学习 列索引:df['列名'] (Series不存在列索引) 行索引:df.loc[].df.iloc[] 选择列 / 选择行 / 切片 / 布尔判断 import numpy as np import pandas as pd # 导入numpy.pandas模块 # 选择行与列 df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100, index = ['on…
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 使用重构索引(reindexing),创建了一个缺少值的DataFrame. 在输出中,NaN表示不是数字的值. 一.检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法  示例1…
在自学到接口自动化测试时, 发现要从excel中读取测试用例的数据, 假如我的数据是这样的: 最好是每行数据对应着一条测试用例, 为方便取值, 我选择使用pandas库, 先安装 pip install pandas. 然后导入: import pandas as pd df=pd.read_excel('../test_data/test_data.xlsx',sheet_name='hehe') 默认第一行数据是表头,先来简单了解一下pandas的用法: 输入: print(df.head(…
其它课程中的python---5.Pandas处理数据和读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学都来得及. 面试的时候看什么:产品.资质.潜力.热情 这几个最重要 python怎么学习:先学大纲,学主干,枝叶等用的时候再去学,这样很快 1.Pandas数据结构有哪些? Series:数组与标签 Dataframe:表格型数据结构 ◆Series -数组与标签 -可以通过标签选取数据 -定长的有…
Numpy的索引切片 索引 In [72]: arr = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]]) In [73]: arr Out[73]: array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) In [74]: arr.ndim Out[74]: 3 In [75]: arr.shape Out[75]: (2, 2, 3) In [76]: arr[0] #返回降低一个维度的数组…
Pandas主要先读取表格类型的数据,然后进行分析. import pandas as pd# 由于是用pandas模块操作数据,因此不用在路径前加open,否则就是python直接打开文件,可能还会打不开出错# file_path_excel = open('E:\\学习\\Python\\Pandas模块的导入及学习-数据分析\\bank.xls')是错的# 文件所在的位置,文件路径用双杠\\,或是反方向单杠/, 或在文件路径前加一个r即可直接使用原路径的单杠\即:r'\'# 'E:\\学习…