数据集下载地址:http://www.nlpr.ia.ac.cn/databases/handwriting/download.html chinese_write_detection.py # -*- coding: utf-8 -*- import tensorflow as tf import os import random import tensorflow.contrib.slim as slim import time import numpy as np import pickl…
Atitit s2018.2 s2 doc list on home ntpc.docx \Atiitt uke制度体系  法律 法规 规章 条例 国王诏书.docx \Atiitt 手写文字识别  讯飞科大 语音云.docx \Atitit 代码托管与虚拟主机.docx \Atitit 企业文化  每日心灵 鸡汤 值班 发布.docx \Atitit 几大研发体系对比 Stage-Gate体系  PACE与IPD体系 敏捷开发体系 CMMI体系.docx \Atitit 存储管理  数据库文件…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ 循环神经网络RNN 相关名词: - LSTM:长短期记忆 - 梯度消失/梯度离散 - 梯度爆炸 - 输入控制:控制是否把当前记忆加入主线网络 - 忘记控制:控制是否暂时忘记主线网络,先看当前分线 - 输出控制: 控制输出是否要考虑要素 - 数据有顺序的/序列化 - 前面的影响后面的 RNN L…
此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接层输出10个分类的预测结果,然后计算损失,进行训练. 代码如下: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #定义一个获取卷积核的函数 def weight_variable(…
# coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constan…
上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #参数概要 def vari…
转载请注明作者:梦里风林 Google Machine Learning Recipes 7 官方中文博客 - 视频地址 Github工程地址 https://github.com/ahangchen/GoogleML 欢迎Star,也欢迎到Issue区讨论 mnist问题 计算机视觉领域的Hello world 给定55000个图片,处理成28*28的二维矩阵,矩阵中每个值表示一个像素点的灰度,作为feature 给定每张图片对应的字符,作为label,总共有10个label,是一个多分类问题…
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190602.html # TensorFlow(十):卷积神经网络实现手写数字识别以及可视化 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.rea…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…