tf.concat( )和tf.stack( )】的更多相关文章

1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
相同点:都是组合重构数据. 不同点:concat()不改变维数,而stack改变了维数(待定!!!) tf.concat是连接两个矩阵的操作,请注意API版本更改问题,相应参数也发生改变,具体查看API. tf.concat(concat_dim, values, name='concat') 除去name参数用以指定该操作的name,与方法有关的一共两个参数: 第一个参数concat_dim:必须是一个数,表明在哪一维上连接      如果concat_dim是0,那么在某一个shape的第一…
转载自:https://blog.csdn.net/appleml/article/details/71023039 https://www.cnblogs.com/mdumpling/p/8053474.html tf.concat(concat_dim, values, name='concat') t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] tf.concat(0, [t1, t2]) == > [[1, 2, 3]…
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)</span> . shape:一个一维整数张量或Python数组.代表张量的形状. mean:数据类型为dtype的张量值或Python值.是正态分布的均值. std…
tf.concat, tf.stack和tf.unstack的用法 tf.concat相当于numpy中的np.concatenate函数,用于将两个张量在某一个维度(axis)合并起来,例如: a = tf.constant([[1,2,3],[3,4,5]]) # shape (2,3) b = tf.constant([[7,8,9],[10,11,12]]) # shape (2,3) ab1 = tf.concat([a,b], axis=0) # shape(4,3) ab2 = t…
1. sys.argv[1:]  # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得what这个数值 # test.py import sys print(sys.argv[1:]) 2. tf.split(value=x, num_or_size_split=2, axis=3) # 对数据进行切分操作,比如原始维度为[1, 227, 227, 96], 切分后的维度为[2, 1,…
参考:https://stackoverflow.com/questions/41813665/tensorflow-slim-typeerror-expected-int32-got-list-containing-tensors-of-type 我的代码是: image_seq = tf.concat(0, image_seq)然后就报错了:Backend TkAgg is interactive backend. Turning interactive mode on.Traceback…
用于连接两个矩阵: mn = array_ops.concat([a, d], 1) #  按照第二维度相接,shape1 [m,a] shape2 [m,b] ,concat_done shape : [m,a+b] tensorflow Rnn,Lstm,Gru,源码中是用以上的函数来链接Xt 和 Ht-1 的,两者的shape 分别是[batch_size, emb_size][batch_size,Hidden_size] 连接接后为的shape为:[batch_size,embeddi…
https://www.tensorflow.org/api_docs/python/tf/concat…
import numpy as npimport tensorflow as tfsess=tf.Session()a=np.zeros((1,2,3,4))b=np.ones((1,2,3,4))c1 = tf.concat([a, b], axis=-1) # 倒数第一维度增加,其它不变d1=sess.run(c1)print('d1=',d1)print('d1.shape=',d1.shape)c = tf.concat([a, b], axis=-2) #倒数第二维度增加,其它不变d=…
tf.concat(concat_dim, values, name='concat') concat_dim需要连接的矩阵的维度, values需要连接的两个矩阵. a=[[1,2,3],[7,8,9]] b=[[4,5,6],[10,11,12]] tf.concat(0, [a,b], name='concat') 在第零维上连接,就是行, concat=[[1,2,3,4,5,6],[7,,8,9,10,11,12,]] 同样道理,在第一维上连接 tf.concat(1, [a,b],…
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`.…
https://blog.csdn.net/lanchunhui/article/details/61712830 https://www.cnblogs.com/silence-tommy/p/7029561.html 二者的主要区别在于: tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值: 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初…
1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价…
函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflow/python/ops/state_ops.py.   将 value 赋值给 ref,并输出 ref,即 ref = value:   这使得需要使用复位值的连续操作变简单   Defined in tensorflow/python/framework/tensor_shape.py. Arg…
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
import tensorflow as tf import numpy as np W = tf.Variable([[2,1,8],[1,2,5]], dtype=tf.float32, name='weights') b = tf.Variable([[1,2,5]], dtype=tf.float32, name='biases') init= tf.global_variables_initializer() saver = tf.train.Saver() with tf.Sessi…
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape. 在第axis位置增加一个维度 Given a tensor input, this operation inserts a dimension of 1 at the dimensio…
首先我们分析一下下面的代码: import tensorflow as tf import numpy as np a=tf.constant([[1., 2., 3.],[4., 5., 6.]]) b=np.float32(np.random.randn(3,2)) #c=tf.matmul(a,b) c=tf.multiply(a,b) init=tf.global_variables_initializer() with tf.Session() as sess: print(c.eva…
tf.trainable_variables()  返回的是 所有需要训练的变量列表 tf.all_variables() 返回的是 所有变量的列表 v = tf.Variable(0, name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(6, name='global_step', trainable=False) # 声明不是训…
a = tf.Variable(0.0,dtype=tf.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(a)) a = tf.assign(a,10) print(sess.run(a)) a = tf.assign(a,20) print(sess.run(a)) 0.0 10.0 20.0 a = tf.Variable(1,dtype=tf.flo…
网络层中变量存在两个问题: 随着层数的增多,导致变量名的增多: 在调用函数的时候,会重复生成变量,但他们存储的都是一样的变量.   tf.variable不能解决这个问题. 变量作用域使用tf.variable_scope和tf.get_variable完美解决了上边的这个问题. 网络层数很多,但一般结构就那么几种.我们使用tf.get_variable方法,变量会在前边加上作用域,类似于文件系统中的“/”. tf.get_variable在第二次使用某个变量时,可以用reuse=True来共享…
https://blog.csdn.net/qq_22522663/article/details/78729029 1. tf.Variable与tf.get_variabletensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过…
官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that session to run ops. 翻译一下就是:tf.InteractiveSes…
tf.add_to_collection(name, value)  用来把一个value放入名称是'name'的集合,组成一个列表; tf.get_collection(key, scope=None) 用来获取一个名称是'key'的集合中的所有元素,返回的是一个列表,列表的顺序是按照变量放入集合中的先后;   scope参数可选,表示的是名称空间(名称域),如果指定,就返回名称域中所有放入'key'的变量的列表,不指定则返回所有变量. tf.add_n(inputs, name=None),…
tf.Session()和tf.InteractiveSession()的区别 官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that sess…
tf.trainable_variable() 此函数返回的是需要训练的变量列表 tf.all_variable() 此函数返回的是所有变量列表 v = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32), name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(tf.co…
tf.name_scope() 此函数作用是共享变量.在一个作用域scope内共享一些变量,简单来说,就是给变量名前面加个变量空间名,只限于tf.Variable()的变量 tf.variable_scope() 和tf.name_scope()作用一样,不过包括tf.get_variable()的变量和tf.Variable()的变量 在同一个程序中多次调用,在第一次调用之后需要将reuse参数设置为True with tf.variable_scope("one"): a = tf…
tf.Variable(<initial - value>,name=<optional - name>) 此函数用于定义图变量.生成一个初始值为initial - value的变量. tf.get_variable(name,shape,dtype,initializer,trainable) 此函数用于定义图变量.获取已经存在的变量,如果不存在,就新建一个 参数: name:名称 shape:数据形状. dtype:数据类型.常用的tf.float32,tf.float64等数…