ACM数论常用知识完全解读】的更多相关文章

此版本纯属扯淡....... 一个一个来起.…
ACM 中常用的算法有哪些?作者: 张俊Michael 网络上流传的答案有很多,估计提问者也曾经去网上搜过.所以根据自己微薄的经验提点看法. 我ACM初期是训练编码能力,以水题为主(就是没有任何算法,自己靠动脑筋能够实现的),这种题目特点是麻烦,但是不难,30-50道题目就可以了. 然后可以接触一下基础的算法,我感觉搜索方向的比较不错,可以解决很多问题,深搜,广搜,然后各种剪枝能力的锻炼. 搜索感觉不错了就可以去看看贪心,图论,和动态规划方向的了.图论有最短路径,最小生成树,网络流,拓扑排序等等…
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且一旦模板有更新,我就直接在博客上改了,所以记得常来看看(.・ω・)) 废话说完了,直接进入正题ヾ(=^▽^=)ノ 素数,又叫质数,定义是除了1和它本身以外不再有其他的因数 我们通过这个定义,可以写如下程序判断一个数是不是质数 bool prime(int x){//判断x是不是质数,是返回true,…
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). int gcd(int a,int b) { return b ? gcd(b,a%b) : a; } 扩展欧几里德算法: 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使…
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a%p +  b%p) %p  (对) (a  -  b) % p = (a%p  -  b%p) %p  (对) (a  *  b) % p = (a%p *  b%p) %p  (对) (a  /  b) % p = (a%p…
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且一旦模板有更新,我就直接在博客上改了,所以记得常来看看(.・ω・)) 废话说完了,直接进入正题ヾ(=^▽^=)ノ 素数,又叫质数,定义是除了1和它本身以外不再有其他的因数 我们通过这个定义,可以写如下程序…
篇一:WPF常用知识以及本项目设计总结:http://www.cnblogs.com/baiboy/p/wpf.html 篇二:基于OneNote难点突破和批量识别:http://www.cnblogs.com/baiboy/p/wpf1.html 篇三:批量处理后的txt文件入库处理:http://www.cnblogs.com/baiboy/p/wpf2.html 篇四:关于OneNote入库处理以及审核:http://www.cnblogs.com/baiboy/p/wpf3.html […
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
javascript常用知识点集 目录结构 一.jquery源码中常见知识点 二.javascript中原型链常见的知识点 三.常用的方法集知识点 一.jquery源码中常见的知识点 1.string,number类型转换的快捷方法 // @param s为字符串,n为数字 function fn(obj){ //转换为String类型 var s = obj +""; //转换为number类型 var n = +obj; } 分享一个面试例子: //加会将其后面自动转换成字符串 &…
AngularJS常用知识汇总(不断更新中....) 注:请点击此处进行充电! app.controller('editCtrl',['$http','$location','$rootScope','$scope','$state','$stateParams',]) function($http, $location, $rootScope, $scope, $state, $stateParams){ // 上边声明添加显示的依赖注入,是为了防止,压缩(如UglifyJS)时改变funct…