刚开始训练一个模型,自己就直接用了,而且感觉训练的数据量也挺大的,因此就没有使用正则化, 可能用的少的原因,我也就不用了,后面,训练到一定程度,accuracy不上升,loss不下降,老是出现loss=nan,输出的结果也就直接不预测,比如 训练二分类器,直接判断固定为某一类别(比如固定输出为正类),这就使得准确率为0.5,阿呀呀,怎么办,不工作哦???? 后面想,训练崩了会不会是learning_rate太大了,这时候我就改小learning_rate,同样的事情继续发生,只不过能维持迭代次数…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合.你也许在训练模型的时候也遇到过同样的问题–在训练数据上表现非同一般的好,却在测试集上表现很一般.或者是你曾在公开排行榜上名列前茅,却在最终的榜单排名中下降数百个名次这种情况.那这篇文章会很适合你. 去避免过拟合可以提高我们模型的性能. 在本文中,我们将解释过拟合的概念以及正则化如何帮助克服过拟合问题…
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被提出.BN 是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN 及一系列改进 Normaliza…
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为深度学习必备之神器.自 BN 之后, Layer Norm / Weight Norm / Cosine Norm 等也横空出世.本文从 Normalization 的背景讲起,用一个公式概括 Normalization 的基本思…
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 另外对一些激活函数具有饱和区,比如 sigmoid 函数的输入较大和较小,此时的梯度很小,这会导致权重更新十分缓慢.又比如下图的 tanh 函数: 如果输入的数值没有 BN 那么数据可能在两…