当使用Keras API 训练模型时,训练时报错? UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize 在运行手写体数字识别的过程的中报错如上. 那么该如何解决这个问题呢? 其实很简单: 原因是兼容问题,tensorflow的版本过高而和安装的cudnn(我的是7.0)和cuda(我的是9.0…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
Beholder is a TensorBoard plugin for viewing frames of a video while your model trains. It comes with tools to visualize the parameters of your network, visualize arbitrary arrays like gradients. Beholder是一个TensorBoard插件,用于在模型训练时查看视频帧. 它具有可视化网络参数的工具,…
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() #train_images 和 train_labels 是训练集 train_images.shape#第一个数字表示图片张数,后面表示图片尺寸,和之前我在opencv上遇到的有所不同 #opencv上是前面表示图片尺寸,后面表示图片的通道数量 输出: (60000, 28,…
  import sys,os sys.path.append(os.pardir) import numpy as np from tensorflow.examples.tutorials.mnist import input_data from PIL import Image import tensorflow as tf def predict(): meta_path = 'ckpt/mnist.ckpt.meta' model_path = 'ckpt/mnist.ckpt' se…
1.TensorFlow版本的问题 报错:RuntimeError: `get_session` is not available when using TensorFlow 2.0. 解决办法:这个问题是TensorFlow版本问题,在2.0以上get_session是被移除了.需要做一些修改,或者把tf降级.可以安装1.15版本:pip install tensorflow==1.15 --upgrade 参考链接:http://30daydo.com/article/561 2.pytho…
背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练,I/O 的性能都会显著影响整体 pipeline 的效率,甚至是最终的模型质量. 我们也逐渐看到容器化成为 AI 训练的趋势,利用容器可以快速弹性伸缩的特点,结合公有云的资源池,能够最大化资源利用率,为企业大大节约成本.因此也就诞生了类似 Kubeflow 和 Volcano 这样的开源组件,帮助…
本机使用的 GPU 是 GeForce 840M,2G 显存,本机内存 8G. 试验时,使用 vgg 网络,调整 vgg 网络中的参数,使得使用对应的 batch_size 时不会提示内存溢出.使用的是 mnist 数据集,图片尺寸是28×28.结果如下: # batch_size = 1 # 参数总数:5946134 # batch_size = 32 # 参数总数:5262436 # batch_size = 64 # 参数总数:4770788 # batch_size = 100 # 参数…
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : PyCharm # 安装 TensorFlow import tensorflow as tf #载入并准备好 MNIST 数据集.将样本从整数转换为浮点数 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) =…