在之前博客中我有记录安装JDK和Hadoop和Mysql的过程,如果还没有安装,请先进行安装配置好,对应的随笔我也提供了百度云下载连接. 安装JDK:   https://www.cnblogs.com/wyh-study/p/12014368.html 安装Hadoop   https://www.cnblogs.com/wyh-study/p/12043948.html 安装Mysql     https://www.cnblogs.com/wyh-study/p/12044652.html…
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以…
Hive架构流程(十分重要,结合图进行记忆理解)当客户端提交请求,它先提交到Driver,Driver拿到这个请求后,先把表明,字段名拿出来,去数据库进行元数据验证,也就是Metasore,如果有,返回有,Driver再返回给Complier编译器,进行HQL解析到MR任务的转化过程,执行完之后提交回给Driver一个MR任务,然后提交到Hadoop集群,交给YRAN进行接收请求并处理,产生结果,把结果再返回给Driver, Driver再把结果返回给客户端进行显示. 当写了一串非常复杂的SQL…
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础软件的安装 CentOS6安装各种大数据软件 第四章:Hadoop分布式集群配置 CentOS6安装各种大数据软件 第五章:Kafka集群的配置 CentOS6安装各种大数据软件 第六章:HBase分布式集群的配置 CentOS6安装各种大数据软件 第七章:Flume安装与配置 CentOS6安装各…
部署规划 HBase全称叫Hadoop Database,它的数据存储在HDFS上.我们的实验环境依然基于上个主题Hive的配置,参考大数据学习(11)-- Hive元数据服务模式搭建. 在此基础上,增加HBase的部署规划.我感觉这8G的内存马上要跑不动了. 主机 RegionServer Master server01  •   server02  •   server03  • • 安装HBase 把HBase解压到/usr目录下,版本是2.26. [root@server01 home]…
一.引言 基于Hive+Hadoop模式构建数据仓库,是大数据时代的一个不错的选择,本文以郑商所每日交易行情数据为案例,探讨数据Hive数据导入的操作实例. 二.源数据-每日行情数据 三.建表脚本 CREATE TABLE IF NOT EXISTS t_day_detail( id STRING, lastday FLOAT, today FLOAT, highest FLOAT, lowest FLOAT, today_end FLOAT, today_jisuan FLOAT, updow…
什么是Hive? 我来一个短而精悍的总结(面试常问) 1:hive是基于hadoop的数据仓库建模工具之一(后面还有TEZ,Spark). 2:hive可以使用类sql方言,对存储在hdfs上的数据进行分析和管理. Hive 是建立在 Hadoop 上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储.查询和分析存储在 Hadoop 中的大规模数据的机制.Hive 定义了简单的类 SQL 查询语言,称为 HQL ,它允许熟悉 SQL 的用户查询数…
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各有各的用处.互相之间又有重合.你能够用汤锅直接当碗吃饭喝汤,你能够用小刀或者刨子去皮. 可是每一个工具有自己的特性,尽管奇怪的组合也能工作,可是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器. HDFS(Hadoop Distributed File…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
转自:https://www.cnblogs.com/reed/p/7730360.html 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器.HD…
一.基本概念 1.什么是hive The Apache Hive ™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driv…
为了方便后面的学习,在学习Hive的过程中先学习一个工具,那就是Sqoop,你会往后机会发现sqoop是我们在学习大数据框架的最简单的框架了. Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中. 对于某些NoSQL数据库它也提供了连接器. Sqoop,类似于其他ETL工具,使用元数据模型来判断数据类型并在数据…
Hadoop 基本概念 一.Hadoop出现的前提环境 随着数据量的增大带来了以下的问题 (1)如何存储大量的数据? (2)怎么处理这些数据? (3)怎样的高效的分析这些数据? (4)在数据增长的情况下如何构建一个解决方案? 在大数据领域提出了两个概念 (1)分布式文件系统   用于存储大量的数据 (2)分布式计算框架MapReduce高效的分析数据 以上的两个概念组成一个名词 Hadoop 二.Hadoop的起源 谷歌发布了三篇论文 : GFS 分布式存储系统  ,  MapReduce  分…
从这节开始,进入对I/O流的系统学习,I/O流在往后大数据的学习道路上尤为重要!!!极为重要,必须要提起重视,它与集合,多线程,网络编程,可以说在往后学习或者是工作上,起到一个基石的作用,没了地基,房屋就算盖起来,风一吹就倒. 好了,废话不多说,进入正题:在学习I/O流之前,我们先掌握什么是异常和File 1.先看看异常的分类: 图1 异常的分类 从上图我们不难看出来,异常主要分为三大类:Error    Exception    RuntimeException 有朋友就要问了,上来就给我搞这…
前面提到了Hive的知识点非常零散,我不知道该怎么把这些知识点分类,跟SQL关系没那么大的就放在这一篇吧. Hive Serde 参考Hive Serde Serde是啥 Serde是序列化和反序列化的简称.为啥这么说?序列化是Serializer,反序列化是Deserializer,各取前几个字母一拼就成了.Hive里的序列化和反序列化干嘛用的?简单的说,就是在HDFS文件和表数据之间做转换. Hive使用Serde(还有文件格式化)来读写表记录. 读数据:HDFS文件->输入文件格式->键…
系列目录 写在前面 从Hadoop出现至今,大数据几乎就是Java平台专属一般.虽然Hadoop或Spark也提供了接口可以与其他语言一起使用,但作为基于JVM运行的框架,Java系语言有着天生优势.而且能找到的与大数据框架如Hadoop等使用介绍的文章也都以Java语言作为示例居多.许多C#er为了转投大数据怀抱也开始学习Java.微软为了拥抱大数据在这方面也做了许多,提供了一些工具及库使C#可以更好的与Hadoop等协同工作.本系列中我们一同学习如何以我们熟悉语言来使用Hadoop等大数据平…
一.引言 5月8日,作为受邀嘉宾,参加了Intel与Cloudera在北京中国大饭店新闻发布会,两家公司宣布战略合作,该消息成为继Intel宣布放弃大数据平台之后的另外一个热点新闻.对于Intel的放弃早在预料之中,对于Intel与Cloudera合作也在意料之中,但是没有想到的是居然那么快.壮士断腕的Intel反倒让我看出几分勇气可嘉来,Cloudera的顺势而为,也被我所认同,Intel借助Cloudera的技术能力,Cloudera借用Intel的商务平台,然后彼此合作真的就能够成功?换句…
引言: 大数据不是海市蜃楼,万丈高楼平地起只是意淫,大数据发展还要从点滴做起,基于大数据构建国家级.行业级数据中心的项目会越来越多,大数据只是技术,而非解决方案,同样面临数据组织模式,数据逻辑模式的问题.它山之石可以攻玉,本文就数据仓库领域数据逻辑模型建设最负盛名的FS-LDM进行介绍,旨在抛砖引玉,希望能够给大家以启迪.参与交流请加群: 一.概述 (1)什么是LDM 逻辑数据模型LDM是数据仓库的数据建设阶段为解决业务需求而定义的数据仓库模型解决方案,它是指导数据仓库进行数据存放.数据组织.以…
一.引言 昨天和一个做互联网大数据(零售行业)的朋友交流,关于大数据传统企业实施的切入点产生了争执,主要围绕两个问题进行了深入的探讨: 问题1:对于一个传统企业而言什么是核心业务,什么是外围业务? 问题2:大数据传统企业实施切入点到底是从核心开始还是该从外围介入? 两个问题有关联关系,如果界定不了核心与外围的边界,那么第二个问题也就无从回答.在此与大家共享,希望更多的人能参与进来发表自己的观点. 二.探讨案例 某品牌电视产品厂商,主营业务是电视机生产.目前规划要做转型做数据化运营,通过内嵌入在电…
引言: NoSQL高级培训课程的基础理论篇的部分课件,是从一本英文原著中做的摘选,中文部分参考自互联网.给大家分享. 正文:  The NoSQL Ecosystem 目录 The NoSQL Ecosystem... 1 13.1. What's in a Name?. 5 13.1.1. SQL and the Relational Model 6 13.1.2. NoSQL Inspirations. 8 13.1.3. Characteristics and Considerations…
一.引言 大数据在结构化数据存储方面的应用需求越来越明确,但是大数据环境下辅助开发工具的不完善,给数据库管理人员和开发人员带来的不变难以言表,基于此创建了开源项目VisualHBase,同时创建了VisualHBase的开发群:263505724,希望能够借助社区的力量,解决大数据企业实施的瓶颈. 二.应用场景 基于Hadoop+HBase构建的实时查询数据库系统. 三.产品目标 HBase企业级可视化管理工具(数据定义和数据操作)和可视化定制开发管理工具. 四.角色分析 1.数据库设计人员 2…
HBase 1.hbase为查询而生,它通过组织机器的内存,提供一个超大的内存hash表,它需要组织自己的数据结构,表在hbase中是物理表,而不是逻辑表,搜索引擎用它来存储索引,以满足实时查询的需求: 2.hbase 是一个基于列存储的非关系型数据库,查询效率高,主要用于查询和展示结果:   3.hbase可以认为是hdfs的一个包装.它的本质是数据存储,是个nosql数据库:hbase部署于hdfs之上,并且克服了hdfs在随机读写方面的缺点.   https://www.ibm.com/d…
经过我个人的调查,发现,在今后的大数据道路上,集合.线程.网络编程变得尤为重要,为什么? 因为大数据大数据,我们必然要对数据进行处理,而这些数据往往是以集合形式存放,掌握对集合的操作非常重要. 在学习集合前,我们先看对象数组: 这是对象数组在创建到赋值到遍历的过程,其中我们遇到了一个数组的硬性问题:数组的大小是不可变的,而且数据类型也是不可变的,那么如果我们要插入一个新的元素该怎么办?很显然数组已经满足不了我们的需求. 此时我们将接触一个新的内容,集合. 集合 一.数组和集合的比较 数组不是面向…
从今天开始,我就正式的走上大数据的道路了,如果说我为啥要去学习大数据,可能我的初衷是以后可以接触到人工智能方面的技术,后来在自学的过程中发现,学习人工智能,需要扎实的算法,以及对大量数据的处理,再者,渐渐的我想先系统的学习以下大数据这块的知识,从Java环境搭建到最后的机器学习,到深度学习,一步一个脚印的去实现,只有把基础打好了,后面的露才会好走,谁也不可能一口吃成胖子.马云的成功,在我看来,他发现了未来技术成长曲线,坚持自己想法,并与之去实现.从一开始的无人问津到后来的一个小举动引到各大媒体的…
什么是MapReduce 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃. MapReduce方法则是: 1.给在座的所有玩家中分配这摞牌 2.让每个玩家数自己手中的牌有几张是黑桃,几张是红桃,然后把这两组数目汇报给你 3.你把所有玩家告诉你的两组数字分别加起来,得到最后的结论 MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个…
好了,从今天开始就开始正式的进入大数据道路的轨道上了,当然了,Java 也是需要不断地在日后进行反复地学习,熟练掌握.(这里我要说一下,Java种还有一些I/O流.Lambda表达式和一些常用工具类有关的博客没有更新.在后面的学习中,我会抽空进行补充.) 在此之前,希望每个学习大数据的童鞋们,电脑的内存一定要在8G以上!!!!! 废话不多说,上干货!! 一.VMware的下载与安装 我这里安装的是Vmware14 根据经验,会有一小部分人的电脑可能会装不上14的版本,这里我给出(Vmware15…
哎,怎么感觉自己变得懒了起来,更新博客的频率变得慢了起来,可能是因为最近得知识开始变得杂变得难了起来,之前在上课的时候,也没有好好听这一方面的知识,所以,现在可以说是在学的新的知识,要先去把新的知识思路屡了一遍,自己实现了代码,把整个过程以及规则搞懂了,我才会来总结博客. 说个有关这节知识的相关内容, 在学习网络编程之前,我们一定要先把I/O输入输出流给先学了,为什么这么说呢?仔细想想,我们学习网络编程,说到底还是数据之间的传输,文字,图片,音乐,视频等等也好,它们有的传输以及接收的方式不同,如…
真的,身体这个东西一定要爱护好,难受的时候电脑都不想去碰,尤其是胃和肾... 这两天耽误了太多时间,今天好转了立刻学习,即刻不能耽误!. 话不多说,说正事: 1.多线程(理解) (1)多线程:一个应用程序有多条执行路径   进程:正在执行的应用程序   线程:进程的执行单元,或者说是执行路径   单线程:一个应用程序只有一条执行路径   多线程:一个应用程序有多条执行路径 多进程的意义何在? 提高CPU的使用率 多线程的意义何在? 提高应用程序的使用率 问题: 一边玩游戏,一边听歌时同时进行的吗…
使用 MaxCompute之前,唱吧使用自建体系来存储处理各端收集来的日志数据,包括请求访问记录.埋点数据.服务器业务数据等.初期这套基于开源组件的体系有力支撑了数据统计.业务报表.风控等业务需求.但随着每天处理数据量的增长,积累的历史数据越来越多,来自其他部门同事的需求越来越复杂,自建体系逐渐暴露出了能力上的短板.同时期,唱吧开始尝试阿里云提供的ECS.OSS等云服务,大数据部门也开始使用 MaxCompute来弥补自建体系的不足. 在内部ELK实现的基础上,从自建机房向MaxCompute进…
这一篇介绍Hive的安装及操作.版本是Hive3.1.2. 调整部署节点 在Hadoop篇里,我用了5台虚拟机来搭建集群,但是我的电脑只有8G内存,虚拟机启动之后卡到没法操作,把自己坑惨了. Hive的运行是基于Hadoop集群的,为了操作的流畅性,我把Hadoop集群全部重新搭建了,一共只有3台虚拟机. 主机 NN RM ZKFC DN NM JN ZK MySQL Hive服务端 Hive客户端 server01  •  •   •  •  •  •  •       server02  •…