前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本文将介绍一种专门检索频繁项集的新算法 - FP-growth 算法. 它只会扫描数据集两次,能循序挖掘出频繁项集.因此这种算法在网页信息处理中占据着非常重要的地位. FP-growth 算法基本原理 将数据存储到一种成为 FP 树的数据结构中,这样的一棵树包含了数据集中满足最小支持度阈值的所有节点信…
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本文将介绍一种专门检索频繁项集的新算法 - FP-growth 算法.它只会扫描数据集两次,能顺序挖掘出频繁项集.因此这种算法在网页信息处理中占据着非常重要的地位. FP-growth 算法基本原理 将数据存储到一种成为 FP 树的数据结构中,这样的一棵树包含了数据集中满足最小支持度阈值的所有节点信息…
关联分析是数据挖掘中常用的分析方法.一个常见的需求比如说寻找出经常一起出现的项目集合. 引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例. 规定一个最小支持度,那么不小于这个最小支持度的项集称为频繁项集(frequent item set). 如何找到数据集中所有的频繁项集呢? 最简单的方法是对所有项集进行统计,可以通过逐渐增大项集大小的方式来遍历所有项集.比如说下面的数据集,先统计所有单个元素集合的支持度,{z} 的支持度为5 (这里把项目出现次…
频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果.关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系.其中"频繁"是由人为设定的一个阈值即支持度 (support)来衡量,"紧密"也是由人为设定的一个关联阈值即置信度(confidence)来衡量的.这两种度量标准是频繁项集挖掘中两个至关重 要的因素,也是挖掘算法的关键所在.对项集支持度和规则置信度的计算是影响挖掘算法效率…
前言: 关于 FP-Growth 算法介绍请见:FP-Growth算法的介绍. 本文主要介绍从 FP-tree 中提取频繁项集的算法.关于伪代码请查看上面的文章. FP-tree 的构造请见:FP-Growth算法之 FP-tree 的构造(python). 正文: tree_miner.py\color{aqua}{tree\_miner.py}文件: #coding=utf-8 import tree_builder import copy class Tree_miner(object):…
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:非hash方法 - 大数据集下的频繁项集:挖掘随机采样算法.SON算法.Toivonen算法 Apriori算法的改进:大数据集下的频繁项集挖掘 1. 前面所讨论的频繁项都是在一次能处理的情况.如果数据量过大超过了主存的大小,这…
Apriori和fp-growth是频繁项集(frequent itemset mining)挖掘中的两个经典算法,虽然都是十几年前的,但是理解这两个算法对数据挖掘和学习算法都有很大好处.在理解这两个算法之前,应该先了解频繁项集挖掘是做什么用的. 频繁项集挖掘是关联规则挖掘中的首要的子任务.关联规则挖掘是要找出一个数据集上,满足一定条件的项集.这些项的集合能构成 形如蕴含式"A=>B"这样的“规则”.这个"=>"符号是通过一些条件来定义的,如果没有条件那…
上篇介绍了如何构建FP树,FP树的每条路径都满足最小支持度,我们需要做的是在一条路径上寻找到更多的关联关系. 抽取条件模式基 首先从FP树头指针表中的单个频繁元素项开始.对于每一个元素项,获得其对应的条件模式基(conditional pattern base),单个元素项的条件模式基也就是元素项的关键字.条件模式基是以所查找元素项为结尾的路径集合.每一条路径其实都是一条前辍路径(perfix path).简而言之,一条前缀路径是介于所査找元素项与树根节点之间的所有内容. 下图是以{s:2}或{…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所…
Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-patterntree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequentitems…