Jesen不等式】的更多相关文章

评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.…
EM, ExpectationMaximization Algorithm, 期望最大化算法.一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计,其概率模型依赖于无法观测的隐变量. 经常用在ML与计算机视觉的数据聚类领域. EM应用:GMM混合高斯模型.聚类.HMM隐马尔科夫模型等. 一.Jesen不等式 对于凸函数(对于所有实数x,有f''(x)≥0).当x时向量时,如果其hessian矩阵H是半正定的(H≥0),那么f是凸函数.如果f…
EM算法之不同的推导方法和自己的理解 一.前言 EM算法主要针对概率生成模型解决具有隐变量的混合模型的参数估计问题. 对于简单的模型,根据极大似然估计的方法可以直接得到解析解:可以在具有隐变量的复杂模型中,用MLE很难直接得到解析解,此时EM算法就发挥作用了. E步解决隐变量的问题,M步求解模型的参数值,也就是极大似然的方法求取模型的参数值. 自己的理解:走一步看一步,走了看,看了再走,迭代过程. 首先使用估计的方式直接设置一组模型的参数值,这组模型的参数值是先验的,甚至可以说是我们瞎设的,这么…
形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w[a][d]+w[b][c](a\;\leq\;b<c\;\leq\;d)$ ②区间包含关系单调:$w[i+1][j]\;\leq\;w[i][j]\;\leq\;w[i][j+1]$ 则$f[\;][\;]$也满足四边形不等式. 记使$f[i][j]$最小的$k$为$g[i][j]$,则$g[i]…
#1223 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个关于X的不等式,问最多有多少个成立. 每个不等式为如下的形式之一: X < C X <= C X = C X > C X >= C 输入 第一行一个整数n. 以下n行,每行一个不等式. 数据范围: 1<=N<=50,0<=C<=1000 输出 一行一个整数,表示最多可以同时成立的不等式个数. 样例输入 4 X = 1 X = 2 X = 3 X &g…
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第…
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<…
(Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|<R$ 内全纯, 在 $|z|\leq R$ 上连续, $M(r)$ 及 $A(r)$ 分别为 $|f(z)|$ 及 $\Re f(z)$ 在圆周 $|z|=r$ 上的最大值, 则当 $0<r<R$ 时, 有 $ M(r)\leq \frac{2r}{R-r}A(R)+\frac{R+r}{R-r}|f(0)|.$ 证明: (1) 当 $f(0)=0$ 时, 记…
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2:  若f满足四边形不等式,则决策s满足 s[i…