从贝叶斯到粒子滤波——Round 2】的更多相关文章

粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌.今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教. 讲粒子滤波之前,还得先讲一个叫”贝叶斯滤波”的东西,因为粒子滤波是建立在贝叶斯滤波的基础上的哩.说太多抽象的东西也很难懂,以目标跟踪为例,直接来看这东西是怎么回事吧: 1. 首先咋们建立一个动态系统,用来描述跟踪目标在连续时间序列上的变换情况.简单一点,我们就使用目标的位置(i,j)作为这个动态系统…
上一篇博文已经讲了贝叶斯滤波的原理以及公式的推导:http://www.cnblogs.com/JunhaoWu/p/bayes_filter.html 本篇文章将从贝叶斯滤波引入到粒子滤波,讲诉粒子滤波的原理. 前面我们已经提到,将跟踪目标的运动看作是一个动态系统.系统的状态以目标的状态来表示.这里,不妨将跟踪目标的中心位置作为系统状态 xt=(it,jt).在连续变化的图像序列里,状态xt随时间不断变换.我们的目的是估计t时刻系统的状态,在这个例子中为目标的中心位置. 状态估计问题(目标跟踪…
认知计算,还要从贝叶斯滤波的基本思想讲起,本文主要是对<Probabilistic Robotics>中贝叶斯滤波器部分的详细讲解. 这一部分,我们先回顾贝叶斯公式的数学基础,然后再来介绍贝叶斯滤波器. (一). 概率基础回顾 我们先来回顾一下概率论里的基本知识: 1. \( X \):  表示一个随机变量,如果它有有限个可能的取值\( \{x_1, x_2, \cdots, x_n \} \). 2. \( p(X=x_i) \):表示变量\( X \)的值为 \( x_i \)的概率. 3…
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on…
本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships)进行建模.当将贝叶斯模型与统计技术一起使用时,这种图模型分析数据具有如下几个优势: (1)    贝叶斯学习能够方便的处理不完全数据.例如考虑具有相关关系的多个输入变量的分类或回归问题,对标准的监督学习算法而言,变量间的相关性并不是它们处理的关键因素,当这些变量中有某个缺值时,它们的预测结果就会出现…
贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 21st Century”和“A250-YEAR ARGUMENT:BELIEF, BEHAVIOR, AND THE BOOTSTRAP”.俺就不参合这事了,下面来看看朴素贝叶斯分类器. 有时我们想知道给定一个样本时,它属于每个类别的概率是多少,即P(Ci|X),Ci表示类别,X表示测试样本,有了概…
简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用于寻找决策面的算法. 基本思想 (1)病人分类举例 有六个病人 他们的情况如下: 症状 职业 病名 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 根据这张表 如果来了第七个病人 他是一个 打喷嚏 的 建筑工人 那么他患上…
假设有事件A和事件B,可以同时发生但不是完全同时发生,如以下韦恩图所示: 其中,A∩B表示A和B的并集,即A和B同时发生的概率. 如此,我们很容易得出,在事件B发生的情况下,事件A发生的概率为: 这个P(A|B)就是条件概率(Conditional Probability). 同理,在事件A发生的情况下,事件B发生的概率为: 由以上式子可得: 再调整一下,变成: 这个就是著名的贝叶斯公式的基本形态了,其中: P(A|B)叫做后验概率(Posterior Probability) P(A)叫做先验…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…