普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vexs[MAXVEX]; EdgeType arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }MGraph…
在这里说下最小连通网的Prim算法: 而Kruskal算法,http://blog.csdn.net/nethanhan/article/details/10050735有介绍,大家可以去看下! Prim算法代码: #include <stdio.h> #include <stdlib.h> /* run this program using the console pauser or add your own getch, system("pause") or…
最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有权值,那么使得边权和最小的生成树叫做最小生成树.(Minimum Spanning Tree ) 解决生成树有两种常用的算法:Kruskal算法和prim算法. 这里我们讲的是prim算法求生成树的解法. 算法思想: ans = 0;(表示权值和) 1.在无向图的基础上,想象我们有一个点的集合X(初…
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijkstra算法,任一点的最短路径相似 4.floyd算法 多源最短路径,动态规划 a) 初始化:D[u,v]=A[u,v]b) For k:=1 to n For i:=1 to n For j:=1 to n If D[i,j]>D[i,k]+D[k,j] Then D[i,j]:=D[i,k]+D…
最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里姆算法的基本思想: 从连通网N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,v),将其顶点加入到生成树的顶点集合U中.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合U中.如此继续下去,直到网中的所有顶点都加入到生成…
Kruskal算法: void Kruskal ( ) {     MST = { } ;                           //边的集合,最初为空集     while( EdgeAccepted < NumVertex - 1                           && E中还有边 )  //MST中边数不到V-1     {         E(V, W) = Min( E );               //最小堆         Delet…
最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的.在这些边中选择N-1条出来,连接所有N个点.这N-1条边的边权之和是所有方案中最小的. Prim算法的时间复杂度时O(n^2)的,因此适用于稠密图的最小生成树,如果是稀疏图的情况下采用Kruskal算法更好. Prim算法蕴含了贪心的思想,其原理是把图中所有的点分成两个集合,一个集合(V)是已经在生成树中的点,另一个集合(G)是不在生成树中的点,然后寻找起点在V中,终点在G中的边中权值最小的边加入生成树,然后把终点从G移到V中…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成树问题. 方法一 . 通过不断找到最小的边来找到终于结果. Kruskal 算法 #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> using namespac…
要求无向图 最小生成树: 连通性,累加和最小 并查集 结构 K算法 从最小的边开始,加上有没有形成环,没有就加,加上有环就不要 难点:如何判断加上一条边,有没有形成环. P算法 从点的角度开始…
Prim算法 1 .概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些…
原文:经典算法题每日演练--第十四题 Prim算法 图论在数据结构中是非常有趣而复杂的,作为web码农的我,在实际开发中一直没有找到它的使用场景,不像树那样的频繁使用,不过还是准备 仔细的把图论全部过一遍. 一:最小生成树 图中有一个好玩的东西叫做生成树,就是用边来把所有的顶点联通起来,前提条件是最后形成的联通图中不能存在回路,所以就形成这样一个 推理:假设图中的顶点有n个,则生成树的边有n-1条,多一条会存在回路,少一路则不能把所有顶点联通起来,如果非要在图中加上权重,则生成树 中权重最小的叫…
还是畅通工程                                                                            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(…
 一:Prim算法       1.概览 普里姆算法(Prim算法).图论中的一种算法.可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中.不但包含了连通图里的全部顶点(英语:Vertex (graph theory)).且其全部边的权值之和亦为最小. 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现.并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该…
无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal算法就是实现最小生成树的算法 应用前提:权值各不相同的连通子图(权值相同,最小生成树不唯一) 2.Prim算法 算法描述: Prim算法是一种"加点法": 算法步骤: 1.定义图中所有顶点集合\(V\),从顶点\(s\)开始:初始化生成树顶点集合\(u={s}\),\(v=V-u\) 2.…
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权值之和最小.(注:N个顶点的图中,其最小生成树的边为N-1条,且各边之和最小.树的每一个节点(除根节点)有且只有一个前驱,所以,只有N-1条边.) 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(Robert C.…
在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,Prim 算法的具体步骤如下: 令 \(G=(V,E)\) 表示原图,\(G'=(V',E')\) 表示 \(G\) 的最小生成树,\(dis_u\) 表示节点 \(u\) 到任意 \(v \in V'\) 的最小距离(初始化为 \(+\infty\)). 任取节点\(s \in V\),令 \(di…
最小生成树 ● 最小生成树的定义是给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minimum Spanning Tree). ● 求最小生成树的算法有很多,可以用Prim, Kuskual, Boruvka, 甚至遗传算法.这里介绍较为基础的两种Prim算法和Kuskual算法. Prim算法 ​ 我们先建立两个点集,分别表示已经被加入到生成树中的点和…
#include <stdio.h>#include <stdlib.h>/* 最小路径算法 -->prim算法 */#define VNUM 9#define MV 65536int P[VNUM];int Cost[VNUM];int Mark[VNUM];    //标记数组int Matrix[VNUM][VNUM] =     //邻居矩阵 无向图{    {0, 10, MV, MV, MV, 11, MV, MV, MV},    {10, 0, 18, MV,…
最小生成树 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出. 普里姆算法(Prim算法) 图例所示: 1)图中有6个顶点v1-v6,每条边的边权值都在图上:在进行prim算法时,我先随意选择一个顶点作为起始点,当然我们一般选择v1作为起始点,好,现在我们设U集合为当前所找到最小生成树里面的顶点,TE集合为所找到的边,现在状态如下: U={v1}: TE…
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现:并在1957年由美国计算机科学家罗伯特·普里姆独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场合,普里姆算法又被称为DJP算法.亚尔尼克算法或普里姆-亚尔尼克算法 算法过程图解:遍历点,用贪心法选择与集合内的点相连的点的最小值: 模板: #inc…
一. 关于最小生成树 对于无向连通图G=(V,E),其中V表示图的顶点,E表示图的边,对于每条边都有一个权值,可以理解为边a->b的权值C为从a走到b要走的路程为C.现在我们希望找到一个无回路的子集T,且有T是E的子集,T连接了所有的顶点,且其权值和最小.那么这样一个子图G‘=(V,T)称之为图G的最小生成树. 二. 最小生成树的基本性质 最小生成树的边数|T|必然服从|T|=|V|-1. 最小生成树不可以有循环 最小生成树不必是唯一的. 三. Prim算法 对于最小生成树有两种算法:prim算…
[本文是自己学习所做笔记.欢迎转载.但请注明出处:http://blog.csdn.net/jesson20121020] 算法描写叙述 假设连通图是一个网,则称该网中全部生成树中权值总和最小的生成树为最小生成树,也称最小代价生成树.利用Prim算法构造的最小生成树方法思想: 如果G=(V,E)是一个具有n个顶点的连通网,顶点集V={v1,v2,...,vn}.设所求的最小生成树T=(U,TE),当中U是T的顶点集.TE是T的边集.U和TE初值均为空集. Prim算法的基本思想例如以下:首先从V…
遇到一道题,简单说就是找一个图的最小生成树,大概有两种常用的算法:Prim算法和Kruskal算法.这里先介绍Prim.随后贴出1924的算法实现代码. Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:…
进阶版神犇可以看看本题解的姊妹篇 Kruskal算法的学习和使用 下面的内容是prim算法 但是最小生成树是什么呢? 标准定义如下:在边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小. 听起来非常的带劲,我们就一起来探讨这一求最小生成树的算法! prim 的四大特征: ●最小生成树算法中prim算法是耗时最长的 ●最小生成树算法中prim算法是适用于求稠密图的 ●最小生成树算法中prime算法最简单易懂 ●请不要多打一个e否则就是prime质数了(手动滑稽) 例子:…
生成树(spanning tree):无向联通图的某个子图中,任意两个顶点互相都联通并且形成了一棵树,那么这棵树就叫做生成树. 最小生成树(MST,minimum spanning tree):如果为有权图的生成树,使得边权和最小的生成树就叫做最小生成树. 从生成树的定义中可以看出,为房子设计电路或者为村庄修建道路这类问题都可以转换为最小生成树问题. 常见的求解算法有Prim算法和Kruskal算法. Prim算法: Prim算法和Dijkstra算法很相似,都是一种从某个顶点出发不断添加边的算…
什么是最小生成树(MST)? 给定一个带权的无向连通图,选取一棵生成树(原图的极小连通子图),使生成树上所有边上权的总和为最小,称为该图的最小生成树. 求解最小生成树的算法一般有这两种:Prim算法和Kruskal算法. Prim算法(普里姆算法) 图的存贮结构采用邻接矩阵.此方法是按各个顶点连通的步骤进行,需要用一个顶点集合,开始为空集,以后将以连通的顶点陆续加入到集合中,全部顶点加入集合后就得到所需的最小生成树. 简单描述: 1.初始化:Vnew = {x},其中x为集合V中的任一节点(作为…
目录 1 问题描述 2 解决方案 2.1 贪心法   1 问题描述 何为Prim算法? 此处引用网友博客中一段介绍(PS:个人感觉网友的这篇博客对于Prim算法讲解的很清楚,本文与之相区别的地方在于具体实现代码的不同,该网友是使用C++实现,而本文是使用Java实现.其他理论讲解可以参考该网友的博客哦,具体链接看文末参考资料) 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (…
[最小生成树之Kruskal算法] 没有看过的可以先看↑,会更简单. [模板]最小生成树 这一篇博客主要是介绍另外一种算法:Prim算法. prim算法就好像是一棵"生成树"在慢慢长大,从开始的一个顶点长到了n个顶点. 总结一下这个算法,将图中所有的顶点分为2类,树顶点(已被选入生成树的顶点)和非树顶点(还未被选入生成树的顶点),接下来要找出一条边添加到生成树,这需要枚举每一个树顶点到每一个非树顶点所有的边,然后最短边加入到生成树,重复操作n-1次,直到所有顶点加入到生成树中. 实现此…
一个具有n个节点的连通图的生成树是原图的最小连通子集,它包含了n个节点和n-1条边.若砍去任一条边,则生成树变为非连通图:若增加一条边,则在图中形成一条回路.本文所写的是一个带权的无向连通图中寻求各边权和最小的生成树. 计算最小生成树的的方法是贪心,则必须满足一下两个条件: 1)不能形成回路: 2)在保证1满足的条件下添加尽可能小的边. 实现的算法有两种,kruskal算法,prim算法,本文只介绍prim算法: 过程: 1)输入:一个加权连通图,其中节点集合为V,边集合为E: 2)初始化:Vn…
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个无向连通图都会拥有至少一个生成树. 而在无向连通图中,我们让每一个边都拥有一个边权(就是每个边代表一个值). 而我们在有边权的无向连通图中构造一个生成树,使得这个生成树所用的边的边权之和最小.这个生成树就叫这个无向连通图的最小生成树! 上图这个最小生成树的边权之和为9,是所有生成树中边权之和最小的.…