题目链接: 3444: 最后的晚餐 Time Limit: 5 Sec  Memory Limit: 128 MB Description [问题背景] 高三的学长们就要离开学校,各奔东西了.某班n人在举行最后的离别晚餐时,饭店老板觉得十分纠结.因为有m名学生偷偷找他,要求和自己暗恋的同学坐在一起. [问题描述] 饭店给这些同学提供了一个很长的桌子,除了两头的同学,每一个同学都与两个同学相邻(即坐成一排).给出所有信息,满足所有人的要求,求安排的方案总数(这个数字可能很大,请输出方案总数取余98…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T…
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! --------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring>   using namespace std;   typedef long long l…
4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1057  Solved: 318[Submit][Status][Discuss] Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便 决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v)移动到(u+Ax,v+Ay)而另一双手能让 马从(u,v)移动到(u+Bx,v+By).小W看见…
题目 题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 输入输出格式 输入格式: 输入两个整数M,N.1<=M<=10^8,1<=N<=10^12 输出格式: 可能越狱的状态数,模100003取余 输入输出样例 输入样例#1: 复制 2 3 输出样例#1: 复制 6 说明 6种状态为(000)(001)(011)(100)(110)(111)    …
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数就行了...要写高精.. --------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>…
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的推导很类似,枚举第一个cc的点的个数 \[ 2^{\binom{n}{2}} = \sum_{i=1}^n \binom{n-1}{i-1} f(i) 2^{\binom{n-i}{2}} \] 整理后 \[ \frac{2^{\binom{n}{2}}}{(n-1)!} = \sum_{i=1}^…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题目大意] 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. [题解] 我们计算三个点组合的情况,去除横竖三共线,以及斜着三点共线的情况即可. 一个矩形斜对角上的整点数为其长宽的最大公约数+1. [代码] #include <cstdio> #include <algorithm> using namespace std…
首先根据生成函数的套路,这个可以写成: \[ \prod_{i=1}^{n}(1+x^1+x^2+...+x^{c[i]}) \] 然后化简 \[ =\prod_{i=1}^{n}\frac{1-x^{c[i]+1}}{1-x} \] \[ =\prod_{i=1}^{n}\frac{1}{1-x}*(1-x^{c[i]+1}) \] \[ =(1+x^1+x^2+...)^n*\prod_{i=1}^{n}(1-x^{c[i]+1}) \] 位数过多所以只考虑有常数项的位,后面那个式子可以df…
首先,给一个单调不降序列的第i位+i,这样就变成了单调上升序列,设原来数据范围是(l,r),改过之后变成了(l+1,r+n) 在m个数里选长为n的一个单调上升序列的方案数为\( C_m^n \),也就是随便选n个数只能组成惟一的单调上升序列,所以要求的式子就变成了 \[ \sum_{i=1}^{n}C_{r-l+i}^{i} \] 这样看着比较难受,我们把它改成 \[ \sum_{i=1}^{n}C_{r-l+i}^{r-l} \] 我们在开头加一个\( C_{r-l+1}^{r-l+1} \)…