它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大.极大似然原理的直观想法我们用下面例子说明.设甲箱中有99个白球,1个黑球:乙箱中有1个白球.99个黑球.现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的.一般说来,事件A发生的概…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 极大似然估计 一.最大似然原理 二.极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法.极大似然估计提供了一种给定观察数据来评估模型参数的方法,即"模型已定,参数未知".通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计. 简…
首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可以这么考虑 比如有n个x,xi对应yi=1的概率是pi,yi=0的概率是1-pi,当参数θ取什么值最合适呢,可以考虑 n个x中对应k个1,和(n-k)个0(这里k个取1的样本是确定的,这里就假设前k个是1,后边的是0.平时训练模型拿到的样本也是确定的,如果不确定还要排列组合) 则(p1*p2*...…
https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html#3543182…
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原因,采用一维高斯分布. 一维高斯分布的概率密度函数表示为: 多个高斯分布叠加在一起形成混合高斯分布: 其中:k 表示一共有 k 个子分布,.为什么累加之和为 1?因为哪怕是混合模型也表示一个概率密度,从负无穷到正无穷积分概率为 1,所以只有累加之和为 1才能保证,很简单的推导. 设总体 ξ,总体服从…
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM算法4 EM推广4.1 F函数的极大-极大算法 期望极大值算法(expectation maximizition algorithm,EM).是一种迭代算法,1977年由Dempster总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计或极大后验估计.EM算法分为…
一.EM算法概述 EM算法(Expectation Maximization Algorithm,期望极大算法)是一种迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP).EM算法是一种比较通用的参数估计算法,被广泛用于朴素贝叶斯.GMM(高斯混合模型).K-means(K均值聚类)和HMM(隐马尔科夫模型)的参数估计. 隐变量是指不能被直接观察到,但是对系统的状态和能被观察到的变量存在影响的变量,比如经典的三硬币模型中,能被观察到的变量是在某次实验中,…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步完成: E步,求期望 M步,求极大. EM算法的引入 如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法或贝叶斯估计法估计模型参数,但是当模型中含有隐变量时,就不能简单地使用这些估计方法.因此提出了EM算法. EM算法流程 假定集合 由观测数据 和未观测数据 组成, 和 分别称为不完整数据和完整数据.假设Z的联合概率密度被参数化地定义为 ,其中 表…