论文名和编号 摘要/引言 相关背景和工作 论文方法/模型 实验(数据集)及 分析(一些具体数据) 未来工作/不足 是否有源码 问题 原因 解决思路 优势 基于表示学习的中文分词 编号:1001-9081(2016)10-2794-05 1.为提高中文分词的准确率和未登录词识别率. 1.分词后计算机才能得知中文词语的确切边界,进而理解文本中所包含的语义信息.中文分词是中文自然语言处理的一项基础性工作,是中文信息处理技术发展的技术瓶颈. 1.使用skip-gram模型将文本中的词映射为高维向量空间中…
Hierarchical Attention Based Semi-supervised Network Representation Learning 1. 任务 给定:节点信息网络 目标:为每个节点生成一个低维向量   基于半监督的分层关注网络嵌入方法 2. 创新点: 以半监督的方式结合外部信息 1. 提出SHANE 模型,集成节点结构,文本和标签信息,并以半监督的方式学习网络嵌入 2. 使用分层注意网络学习节点的文本特征, 两层双向GRU 提取单词和句子的潜在特征   3. 背景 1. 现…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
Deep Learning论文笔记之(一)K-means特征学习 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,…
Deep Learning论文笔记之(三)单层非监督学习网络分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,…
Spectral Norm Regularization for Improving the Generalizability of Deep Learning论文笔记 2018年12月03日 00:03:07 RRZS 阅读数 153更多 分类专栏: 深度学习 cv   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/beyondjv610/article/details/8472247…
http://openaccess.thecvf.com/content_cvpr_2017/papers/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.pdf Semantic Autoencoder for Zero-Shot Learning,Elyor Kodirov Tao Xiang Shaogang Gong,Queen Mary University of London, UK,{e.kodirov, t.xiang, s.go…
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang Kaihua团队在ECCV 2014上发表的STC tracker:Fast Visual Tracking via Dense Spatio-Temporal Context Learning.相信做跟踪的人对他们团队应该是比较熟悉的了,如Compressive Tracking就是他们的杰作之一…
https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢. 本文的论文来自: Notes on Convolutio…
PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 2017  2017.03.12  Code and video examples can be found at: https://coxlab.github.io/prednet/ 摘要:基于监督训练的深度学习技术取得了非常大的成功,但是无监督问题仍然是一个未能解决的一大难题(从未标注的数据中学习到…
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normalization Strategy Initialization 简介 写这篇博客主要是为了进一步了解如何将CNN当作Encoder结构来使用,同时这篇论文也是必看的论文之一.该论文证明了使用CNN作为特征抽取结构实现Seq2Seq,可以达到与 RNN 相接近甚至更好的效果,并且CNN的高并行能力能够大…
主要原理: 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题. 和Siamese Neural Networks不同的是: Relation Network中branch的输出和relation classifier的输入是feature map 而Siamese中branch的输出和classifier的输入是feature vector 其中: g-表示关系深度网络 C-表示concatenate f-表示特征提取网络(branch) xi,xj-…
论文信息 论文标题:Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning论文作者:Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, Yangyong Zhu论文来源:2020 ICDM论文地址:download 论文代码:download 1 Introduction 创新点:提出一种新的子图对比度自监督表示学习方法,利用…
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, Liang Wang论文来源:2020, ArXiv论文地址:download 代码地址:download Abstract 在本文中,作者提出了一个利用节点级对比目标的无监督图表示学习框架.具体来说,通过破坏原始图去生成两个视图,并通过最大化这两个视图…
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning论文作者: Kaize Ding .Yancheng Wang .Yingzhen Yang.…
论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning论文作者:Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, Shirui Pan论文来源:2021, IJCAI论文地址:download 论文代码:download 1 Introduction 创新:融合交叉视图对比和交叉网…
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng, Jihong Wang, Minnan Luo, Yaoliang Yu, Jundong Li, Lina Yao, Xiaojun Chang论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 使用信息瓶颈的图级表示可解释性.…
翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with Sememes 融合义原知识的词汇表示学习 摘要 Abstract Sememes are minimum semantic units of word meanings, and the meaning of each word sense is typically composed by sev…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/   Notes on Representation Learning By Zac Kriegman, Senior Data Scientist in the Thomson Reuters Data Innovation Lab | 02/07/2017 Tags: Deep Learning , Neural Networ…
Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html Self-Supervised Representation Learning Nov 10, 2019 by Lilian Weng representation-le…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工作,目前很热,许多直接研究网络表示学习的工作和同时优化网络表示+下游任务的工作正在进行中. 清华大学计算机系的一个学习组 新浪微博@涂存超 整理的论文列表:https://github.com/thunlp/NRLpapers,并一直持续更新着,里面详细的列举了最近几年有关网络表示学习(networ…
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
翻译学长的一片论文:Long Short-Term Memory Neural Networks for Chinese Word Segmentation 传统的neural Model for Chinese Word  Segmentation 中文分词一般是基于字符的序列标签.每个字符可以被标记为集合{B, M, E, S}中的一个元素. B - Begin, M - Middle, E-End of a multi-character segmentation(多字符分割),S 代表…
目录 主要挑战 主要的贡献和创新点 提出的方法 总体框架与算法 Vanilla pseudo label sampling (PLS) PLS with adversarial learning Training losses 实验与结果 结论 导言 文章提出了一种新的三元组损失 HSoften-Triplet-Loss,在处理one-shot Re-ID任务中的噪声伪标签样本方面非常强大.文章还提出了一种伪标签采样过程,确保了在保持高可靠性的同时为训练图像形成正对和负对的可行性.与此同时,文章…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
Representation learning : 表征学习,端到端的学习 pre-specified  预先指定的 demonstrate  论证;证明,证实;显示,展示;演示,说明 attempt  vt.尝试;试图 n. 进攻;尝试,冲击 distilled  adj.由蒸馏得来的 v.蒸馏( distil的过去式和过去分词 );从…提取精华 relevant  adj.有关的,中肯的;相关联的;确切的;有重大意义[作用]的,实质性的 phrase structures  短语结构 for…