时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装的ARIMA统计软件包,在默认情况下,R没有预装forecast包,因此需要先安装该包 > install.packages("forecast') 导入依赖包zoo,再导入forecast包 > library("zoo&…
似乎突如其来,似乎合情合理,我们和巴菲特老先生一起亲见了一次,又一次,双一次,叒一次的美股熔断.身处历史的洪流,渺小的我们会不禁发问:那以后呢?还会有叕一次吗?于是就有了这篇记录:利用ARIMA模型来预测美股的走势. 1. Get Train Dataset and Test Dataset 本例子简单地以2020年第一季度的道指的收盘价为数据集(数据来源雅虎财经),将前面95%的数据用作本次预测的训练集,后面5%的数据用作本次预测的测试集. library(quantmod) stock <-…
从上一篇分析已经得知均线黄金交叉原则并不适用于震荡期,那有什么办法可以规避震荡期呢或者说有什么办法可以减少无脑跟的损失?我们继续玩一下. Required Packages library(quantmod) library(ggplot2) library(scales) Postpone Trading 第一个尝试的方法是推迟买入时间. 若股价处于震荡期,那么有可能就是今天涨了明天跌.我们可以在买入信号出现的时候暂时抑制内心买买买的冲动,推迟个3-5天观察一下股价是否还处于上升期.若是,我们…
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求.但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值. 方差不变的正态分布.即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下,我们可以通过考虑数据之间的相关性来创建更好的预测模型.自回归移动平均模型( ARIMA) 包含一个…
双11临近的我发现自己真的很穷很穷很穷(重要的问题说三遍)-- 贫穷催人上进.于是我就寻思着在空闲时间自己捣鼓一下钱生钱的游戏是怎么玩的,毕竟就算注定做韭菜也要做一根有知识有理想的韭菜. 第一个要玩的模型就是股票交易中的均线黄金交叉. 作为一个基础的韭菜一定听说过均线黄金交叉原则,也就是说当短期移动平均线向上突破长期移动平均线,表明趋势见涨,适合买入:相反地如果短期移动平均线向下突破长期移动平均线,表明趋势看跌,适合卖出. 那么这个韭菜们都知道的交易原则是不是真的能帮大家赚钱呢?下面我们以中国平…
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中diff stats包中的acf和pacf处理自相关和偏自相关stats包中的arima函数模型…
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- ts(item,start=c(2014)) > plot.ts(item) > itemdiff<- dif…
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html…
http://www.cnblogs.com/bicoffee/p/3838049.html…
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻数据差分的线性模型!!! ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列(Time-series Approach…