【论文解读】[目标检测]retinanet】的更多相关文章

​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNet算不上第一篇anchor free的论文,但anchor freee的流行却是从CornerNet开始的,其中体现的一些思想仍值得学习. 看过公众号以往论文解读文章的读者应该能感觉到,以往论文解读中会有不少我自己的话来表述,文章写得也很简练.但这篇论文的写作实在很好,以至于这篇解读文章几乎就是对论…
识别葡萄的一种虫害,比较了传统SIFT和深度学习分类,最后还做了目标检测 分类用的 MobileNet,目标检测 RetinaNet MobileNet 是将传统深度可分离卷积分成了两步,深度卷积和逐点卷积,性能基本不受影响情况下,降低计算量和参数量 RetinaNet 主要提出 focal loss,用于处理目标检测时正负样本不均衡问题,FL的作用如下 网络结构就是 FPN + sub-network + FL FPN是图像金字塔网络,对不同scale的图像进行融合和预测,主要用于目标检测,原…
论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本.同时,基于FPN设计了RetinaNet,在精度和速度上都有不俗的表现 论文:Focal Loss for Dense Object Detection 论文地址:https://arxiv.org/abs/1708.02002 论文代码:https://github.com/facebookresearch/Detectron Introducti…
作为单阶段网络,retinanet兼具速度和精度(精度是没问题,速度我持疑问),是非常耐用的一个检测器,现在很多单阶段检测器也是以retinanet为baseline,进行各种改进,足见retinanet的重要,我想从以下几个方面出发将retinanet解读下,尽己所能. retinanet出发点,目的,为什么 retinanet解决方案,做法,干什么 retinanet的效果,缺点,改什么 retinanet中的疑点(我个人的) [出发点] retinanet的出发点,作为一款单阶段检测器,开…
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection>,该论文针对目标检测任务,提出了新的高斯检测框(GBB),及新的计算目标相似性的方法(ProbIoU). 本文分享自华为云社区<论文解读系列十九:用于目标检测的高斯检测框与ProbIoU>,作者:BigDragon. 论文地址: https://arxiv.org/abs/2106.06072…
目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述   这是CVPR 2018的一篇文章,这篇文章也为我之前读R-CNN系列困扰的一个问题提供了一个解决方案:R-CNN在fine-tuning使用IOU threshold = 0.5来防止过拟合,而在分类阶段,使用softmax因为之前0.5的设定太过宽松(loose),而导致精度下降较多,因此单独训练了一个新的SVM分类器并且更改了IOU阈值(文…
项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并在速度和精度上很容易找到平衡.当处理速度为40FPS时,YOLOv2取得76.8mAP的成绩,超过了当时最好的检测方法Faster RCNN with ResNet和SSD 接着,作者提出了一种在object detection和classification两个任务上进行联合训练的方法.借助该方法,…
R-CNN 创新点 经典的目标检测算法使用滑动窗法依次判断所有可能的区域,提取人工设定的特征(HOG,SIFT).本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上用深度网络提取特征,进行判断. 采用大样本下有监督预训练+小样本微调的方式解决小样本难以训练甚至过拟合等问题. 测试过程 输入一张多目标图像,采用selective search算法提取约2000个建议框: 先在每个建议框周围加上16个像素值为建议框像素平均值的边框,再直接变形为227×227的大小: 先将所有建议框像…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
引文 ​ 最近笔者也在寻找目标检测的其他方向,一般可以继续挖掘的方向是从目标检测的数据入手,困难样本的目标检测,如检测物体被遮挡,极小人脸检测,亦或者数据样本不足的算法.这里笔者介绍一篇小样本(few-shot)数据方向下的域适应(Domain Adaptation)的目标检测算法,这篇新加坡国立大学&华为诺亚方舟实验室的paper<Few-shot Adaptive Faster R-CNN>被收录于CVPR2019,解决的具体问题场景是我们有在普通常见场景下的汽车目标检测,我们只有…
背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络结构,输入的原图片,经过24个卷积层提取特征,全连接层输出一个7*7*30的tensor,这个tensor里面就包含我们预测的结果了. 那么这个7*7*30的tensor包含哪些信息呢? 首先,7*7可以映射到448*448的原图片中,得到7*7个64*64的grid cell,对于原图中的每一个目…
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红.既然convNet在图像分类任务上能取得好成绩,是不是也能放到目标检测任务上呢.本文就是用convNet解决目标检测任务的首次探索.在PASCAL VOC 2010上的mAP达到了53.7%. 方法 模型一共分为三个模块. (1)region proposals(区域推荐)).在一张整图上面产生很…
背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样,然后分别在这些feature map上进行预测:而DSSD则是在后面加入了很多的Deconvolution Module,通过逆卷积算法feature map上采样,然后与前面的feature map通过点积产生新的feature map,包含上下文的信息. (2)除了逆卷积操作,DSSD还引入了新…
作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测 概要 ​ 这是一篇发表于CVPR2019的关于显著性目标检测的paper,<BASNet:Boundary-Aware Salient Object Detection>[1]显而易见的就是关注边界的显著性检测,主要创新点在loss的设计上,使用了交叉熵.结构相似性损失.IoU损失这三种的混合损失,使网络更关注于边界质量,而不是像以前那样只关注区域精度.在单个GPU上能跑25 fps,在六种公开数据集上能达到 stat…
目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括Fast R-CNN.Faster R-CNN 和 FPN等.第二部分则重点讨论了包括YOLO.SSD和RetinaNet等在内的单次检测器,它们都是目前最为优秀的方法. 一.基于候选区域的目标检测器 1.1  滑动窗口检测器 自从 AlexNet 获得 ILSVRC 2012 挑战赛冠军后,用 CN…
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人…
CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 论文链接地址:https://arxiv.org/pdf/1812.02781.pdf 摘要内容: 本文提供了基于端到端单目3D目标检测和度量形状检索的深度学习方法.为了在3D中提升2D检测,定位,以及缩放,提出了一种新的loss函数.不同于各自独立的优化这些数量,3D示例允许适当的度量box…
CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测 Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector 具有注意RPN和多关系检测器的少点目标检测 目标检测的惯用方法需要大量的训练数据,准备这样高质量的训练数据很费精力的.本文中,提出一种新的少点目标检测网络,只用几个带注释的示例的看不见的类来检测目标.集中到新方法的核心是,注意力RPN,多相关检测器,以及对比训练策略,探索少点支持集…
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…
实时目标检测和分类 GIF 图: 视频截图: 论文: https://arxiv.org/pdf/1506.02640.pdf https://arxiv.org/pdf/1612.08242.pdf 了解更多 YOLO,并且下载权重文件: https://pjreddie.com/darknet/yolo/ 视频教程(视频分享到群文件了): https://www.youtube.com/watch?v=4eIBisqx9_g&feature=youtu.be Android Demo:htt…
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artificial Intelligence) 原文地址:SCNN 论文提出了一个新颖网络Spatial CNN,在图片的行和列上做信息传递.可以有效的识别强先验结构的目标.论文提出了一个大型的车道检测数据集,用于进一步推动自动驾驶发展. 代码: 官方-torch Abstract 现今的CNN模型通常是由卷积…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
论文:You Only Look Once: Unified, Real-Time Object Detection 原文链接:https://arxiv.org/abs/1506.02640 背景介绍 目前的目标检测系统是由原来的目标分类系统改造而来.为了检测目标这些系统在待检测图片的不同位置而使用分类系统.像DPM(deformable parts models)使用了滑动窗口方法.分类器在图片中的不同窗口上运行以便检测出目标. 更先进一点的研究,例如R-CNN使用了候选区域生成的方法.首先…
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf  Slides:http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 二.代码训练测试: https://github.com/weiliu89/caffe/tree/ssd  一.论文算法大致流程: 1.类似“anchor”机制: 如上所示:在 feature map…
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的extra features做了诸多分析,并且提出了HyperLearner行人检测框架(基于Faster R-CNN改进),在KITTI&Caltech&Cityscapes数据集上实现了极为优秀的性能. 论文:http://openaccess.thecvf.com/content_cvpr_…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 ​ 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过程中可能会逐渐被稀释,另外卷积神经网络的感受野大小与深度是不成正比的,目前很多流行方法都是引入Attention(注意力机制),但是本文是基于U型结构的特征网络研究池化对显著性检测的改进,具体步骤是引入了两个模块GGM(Global Guidance Module,全局引导模块)和FAM(Featu…
题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧,毕竟是第一篇使用RGB feature maps 融合到BEV特征中: 从以下几个方面开始简述论文 Open Problems Contributions Methods Experiments My Conclusion 1> Open Problems 联合多传感器数据能获得更好的特征表示:…
论文名称:CenterNet: Keypoint Triplets for Object Detectiontection 论文链接:https://arxiv.org/abs/1904.08189 代码链接:https://github.com/Duankaiwen/CenterNet 简介 该论文是由中科院,牛津大学以及华为诺亚方舟实验室联合提出.截至目前(2019.04.19),CenterNet应该是one-stage目标检测方法中性能(精度)最好的方法. 传统的基于关键点的目标检测方法…