1.构造损失函数的目标函数 2.对目标函数进行泰勒展开 3.把样本遍历转换成叶子节点遍历,合并正则化惩罚项 4.求wj进行求导,使得当目标函数等于0时的wj的值 5.将求解得到的wj反导入方程中,解得最终的目标函数 6.对样本进行分割时,用分割前的目标函数的值-分割后左右子树的目标函数的值,来划分得到最大的分割情况,以此来判断分割的界限 xgboost依据的是一种残差思想 以下是推导过程 实例说明…
集成算法思想: Xgboost基本原理: Xboost中是一个树(函数)接着一个树(函数)往里加,每加一个树都希望整体表达效果更好一些,即:目标函数逐步减小. 每加入一个函数,使目标函数逐渐减小,整体表达效果提升. xgboost目标函数推导:…
工作原理 基于集成算法的多个树累加, 可以理解为是弱分类器的提升模型 公式表达 基本公式 目标函数 目标函数这里加入了损失函数计算 这里的公式是用的均方误差方式来计算 最优函数解 要对所有的样本的损失值的期望, 求解最小的程度作为最优解 集成算法表示 集成算法中对所有的树进行累加处理 公式流程分解 每加一棵树都应该在之前基础上有一个提升 损失函数 叶子节点惩罚项 损失函数加入到基本公式目标函数中 多余出来的常数项就用 c 表示即可 目标函数推导 如上图. 三个树, 真实值 1000 , 第一棵树…
集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ———————————————————————————————————————————— 集成算法  集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器. 弱分类器(weaklearner)指那些分类准确率只稍微好于随机猜测的分类器(准确率稍大于百分之50,可以是之前学过的逻辑…
1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本思路 提升方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当(按照一定权重)的综合(例如线性组合加法模型)所得出的判断,要比其中任何一个专家单独的判断好 历史上,Kearns和Valiant首先提出了“强可学习(strongly learnable)”和“弱可学习(weekly l…
目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类或回归模型(可以分阶段来做) bagging模型 全称:bootstrap aggregation(说白了就是并行训练一堆分类器) 最典型代表:随机森林 随机:数据采样随机,特征选择随机 森林:很多个决策树并行放在一起 构造树模型 由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样.…
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0) \] 二阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2 \] 梯度下降法 \[ \begin{align*} &f(x)=f(x^k)+g_k^T*(x-x^…
Ensemble learning - 集成算法 ▒ 目的 让机器学习的效果更好, 量变引起质变 继承算法是竞赛与论文的神器, 注重结果的时候较为适用 集成算法 - 分类 ▒ Bagging - bootstrap aggregation ◈ 公式 ◈ 原理 训练多个分类器取平均, 并行 的训练一堆的分类器 ◈ 典例 随机森林 ◈ 随机 输入 - 数据源采样随机 - 在原有数据上的进行 60% - 80% 比例的有放回的数据取样 数据量相同, 但是每个树的样本数据各不相同 特征 - 特征选择随机…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…