BZOJ 1050 旅行(并查集)】的更多相关文章

很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map>…
思路: 枚举最大边 像Kruskal一样加边 每回更新一下 就搞定了- //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define N 10050 int n,m,s,t,fx,fy,f[N],stk[N],top,vis[N],recx,recy; double ans=666666.0; struct Node{int x,…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1050 题意:给出一个带权图.求一条s到t的路径使得这条路径上最大最小边的比值最小? 思路:将边排序.枚举最小边,然后将边一个一个插到并查集里,s和t联通时计算更新答案. struct node { int u,v,w; void get() { RD(u,v,w); } }; int cmp(node a,node b) { return a.w<b.w; } int n,m,s,t;…
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1050 题目大意: 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小.如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数. 备注: 两个顶点之间可能有多条路径. 思路: 枚举最小的边,逐步按照权值从小…
Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小.如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数. 备注: 两个顶点之间可能有多条路径. Input 第一行包含两个正整数,N和M. 下来的M行每行包含三个正整数:x,y和v.表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公…
Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconnected Connected Hint N<=100000 M<=200000 K<=100000 题目大意 给出一个有n个节点和m条边的图,然后有k个询问,每个询问是删掉一些边,然后判断图是否连通,询问之间互相独立. 连通性问题通常的做法是并查集,然而并查集不支持删边,但是可以撤销上次操作…
题目如下: 题目描述 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小.如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数. 备注: 两个顶点之间可能有多条路径. 输入 第一行包含两个正整数,N和M. 下来的M行每行包含三个正整数:x,y和v.表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶…
图论一直是小C的弱项,相比其它题型,图论的花样通常会更多一点,套路也更难捉摸. Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小.如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数. 备注: 两个顶点之间可能有多条路径. Input 第一行包含两个正整数,N和M.下来的M行每行包含三个正…
正着不好搞,考虑倒着搞.倒着搞就是一个并查集. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include…
利用并查集按秩合并,保存每个点合并的时间: 求时间时,就一直跳u=fa[u],并记录路径上时间的最大值,代表最后一次合并的时间 #include<cstdio> #include<iostream> #define R register int ; using namespace std; inline int g() { R ret=,fix=; register :fix; +(ch^); while(isdigit(ch=getchar())); return ret*fix…