为了能让 Tensorflow GPU 版本跑起来,我折腾了1个多星期. 总体参照 https://zhuanlan.zhihu.com/p/32118549 ,安装成功,但还是有不足的地方, 在此记录,为以后重新装系统方便. 1. 我选择Ubuntu版本的原则 目前,我选择Ubuntu版本的原则就是能否立即连上网络(无论有线还是无线,得先能连接网络才行).因为不同机器网卡的原因,导致低版本Ubuntu安装状态时无法识别网卡.我在本机上安装过Ubuntu 14.04, 16.04版本,均无法识别…
一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD64/EM64T) DISPLAY DRIVER (418.56)  下载地址 CUDA:Cuda9.0  下载地址 CUDNN:cuDNN v7.5.0 (Feb 21, 2019), for CUDA 9.0 (cuDNN Library for Linux)  下载地址 Anaconda:An…
硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 软件环境 搜狗输入法 显卡驱动:LINUX X64 (AMD64/EM64T) DISPLAY DRIVER (418.56)  https://www.nvidia.cn/Download/index.aspx? CUDA:Cuda9.0  https://developer.nvidia.com/cuda-90-download-archive?target_os=Lin…
NVIDIA深度学习Tensor Core性能解析(下) DeepBench推理测试之RNN和Sparse GEMM DeepBench的最后一项推理测试是RNN和Sparse GEMM,虽然测试中可以选择FP16,但实际上它们都只支持FP32运算. 虽然RNN可能会有加速,但DeepBench和NVIDIA目前仅支持单精度RNN推理. NVIDIA Caffe2测试之ResNet50和ImageNet 虽然内核和深度学习数学运算可能很有用,但实际应用中是使用真实数据集进行训练的.使用标准的IL…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
In this lesson, you will be introduced to Python generators. You will see how a generator can replace a common function and learn the benefits of doing so. You will learn what role the yield keyword provides in functions and how it differs from a ret…
嵌入式平台:NVIDIA Jetson TX2 嵌入式系统:Ubuntu16.04 虚拟机系统:Ubuntu14.04 一.NSight简介 Jetpack开发工具为人工智能提供了一整套软件架构,包括代码示例(Sample Code).NSight开发工具(NSight Developer Tools).同时也为我们提供了丰富的多媒体API(Multimedia API),这些API涵盖深度学习(Deep Learning).计算机视觉(Computer Vision).图像渲染(Graphic…
NVIDIA深度学习Tensor Core性能解析(上) 本篇将通过多项测试来考验Volta架构,利用各种深度学习框架来了解Tensor Core的性能. 很多时候,深度学习这样的新领域会让人难以理解.从框架到模型,再到API和库,AI硬件的许多部分都是高度定制化的,因而被行业接受的公开基准测试工具很少也就不足为奇.随着ImageNet和一些衍生模型(AlexNet.VGGNet.Inception.Resnet等)的影响,ILSVRC2012(ImageNet大规模视觉识别挑战)中的图像数据集…
来自吉浦迅科技 整理发布 http://mp.weixin.qq.com/s?__biz=MjM5NTE3Nzk4MQ==&mid=2651231163&idx=1&sn=d48b4480da3481de8ae20e78b1ee22df&scene=23&srcid=0605uZ1nd6QlqnK6AJdMlZkI#rd 第五名:Tesla K80 Tesla --英伟达高端大气上档次专用计算卡品牌,以性能高.稳定性强,适用于长时间高强度计算著称. Tesla K8…
  深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑. 1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从ub…