TensorFlow从0到1之回归算法(11)】的更多相关文章

回归是数学建模.分类和预测中最古老但功能非常强大的工具之一.回归在工程.物理学.生物学.金融.社会科学等各个领域都有应用,是数据科学家常用的基本工具. 回归通常是机器学习中使用的第一个算法.通过学习因变量和自变量之间的关系实现对数据的预测.例如,对房价估计时,需要确定房屋面积(自变量)与其价格(因变量)之间的关系,可以利用这一关系来预测给定面积的房屋的价格.可以有多个影响因变量的自变量. 因此,回归有两个重要组成部分:自变量和因变量之间的关系,以及不同自变量对因变量影响的强度. 以下是几种常用的…
计算图中的操作 import numpy as np import tensorflow as tf sess = tf.Session() x_vals = np.array([1., 3., 5., 7., 9.]) x_data = tf.placeholder(dtype=tf.float32) m_const = tf.constant(3.) my_product = tf.multiply(x_data, m_const) for x_val in x_vals: print(se…
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space.", 20131 from __future__ import division, print_function, absolute_import import collect…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展.以下都用矩阵法表示,如果对于矩阵分析不熟悉,推荐学习张贤达的<矩阵分析与应用>. 1. 回顾线性回归 首先我们简要回归下线性回归的一般形式: \(h_\mathbf{\theta}(\mathbf{X}) = \mathbf{X\theta…
看机器学习看到了回归函数,看了一半看不下去了,看到能用方差进行函数回归,又手痒痒了,自己推公式写代码验证: 常见的最小二乘法是一阶函数回归回归方法就是寻找方差的最小值y = kx + bxi, yiy-yi = kxi+b-yi方差为∑(kxi + b - yi )^2f = k^2∑xi^2 + b^2 + ∑yi^2 +2kb∑xi - 2k∑xi*yi - 2yib求极值需要对其求微分,因为是二元函数,因此使用全微分公式,其极值点应该在两个元的偏微分都为0处δf/δk = 2k∑(xi^2…
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用…
SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准.信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息. 2 ID3算法只能对描述属性为离散型属性的数据集构造决策树,其余两种算法对离散和连续都可以处理 2,C4.5算法实例介绍(参考网址:http://m.blog.csdn.net/article/details…
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ(x(i))-y(i) ) ] * xi .经过查找资料才知道,书中省去了大量的理论推导过程,其中用到了线性函数.sigmoid 函数.偏导数.最大似然函数.梯度下降法.下面让我们一窥究竟,是站在大神的肩膀描述我自己的见解. 1.2 Logistic 回归的引入 Logistic 回归是概率非线性模型…
Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html 主要思想 根据现有数据对分类边界线建立回归公式,以此进行分类,其核心是通过最优化算法寻找最佳回归系数(权重系数),主要应用于二分类. 算法原理 二分类的特点是非此即彼,其数学特性符合单位阶跃函数,在某一点会发生突变.这也符合我们现实当中的一些应用场景(比如分数从0 到 60会很容易,越往上你所花的时…