基于Spark GraphX计算二度关系】的更多相关文章

关系计算问题描述 二度关系是指用户与用户通过关注者为桥梁发现到的关注者之间的关系.目前微博通过二度关系实现了潜在用户的推荐.用户的一度关系包含了关注.好友两种类型,二度关系则得到关注的关注.关注的好友.好友的关注.好友的好友四种类型. 如果要为全站亿级用户根据二度关系和四种桥梁类型推荐桥梁权重最高 TopN 个用户,大致估算了下总关系量在千亿级别,按照原有的 Mapreduce 模式计算整个二度关系,需要以桥梁用户为 Key,把它的关注和粉丝两个亿级的表做 Join,如果活跃用户按照亿计,平均关…
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
[基于spark IM 的二次开发笔记]第一天 各种配置 http://juforg.iteye.com/blog/1870487 http://www.igniterealtime.org/downloads/source.jsp…
背景 本文给出了一个简单的计算图中每一个点的N度关系点集合的算法,也就是N跳关系. 之前通过官方文档学习和理解了一下GraphX的计算接口. N度关系 目标: 在N轮里.找到某一个点的N度关系的点集合. 实现思路: 1. 准备好边数据集.即"1 3", "4, 1" 这种点关系. 使用GraphLoader 的接口load成Graph 2. 初始化每一个Vertice的属性为空Map 3. 使用aggregateMessages把VerticeID和totalRou…
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
https://www.jianshu.com/p/8707cd015ba1 问题描述: 以下是qq好友关系,进行好友推荐,比如:老王和二狗是好友 , 二狗和春子以及花朵是好友,那么老王和花朵 或者老王和春子就有可能也认识,可以对老王推荐春子和或花朵作为好友. 注意以下是制表符:tab建,所以程序中用 /t进行分割 老王 二狗 老王 二毛 二狗 春子 二狗 花朵 老王 花朵 花朵 老王 春子 菊花 问题分析 问题分析: 主 ---> 从 从 --->主 分别列出每一个关系,然后都列出从--&g…
随着公司平台用户数量与表数量的不断增多,各种表之间的数据流向也变得更加复杂,特别是某个任务中会对源表读取并进行一系列复杂的变换后又生成新的数据表,因此需要一套表血缘关系解析机制能清晰地解析出每个任务所形成的表血缘关系链. 实现思路: spark对sql的操作会形成一个dataframe,dataframe中的logicplan包含了sql的语法树,通过对logicplan的语法树解析可以获取当前stage所操作的输入表和输出表,将整套表关系链连接起来,再去除中间表即可获取当前作业的输入表和输出表…
MessageTreePlugin.java final MessageTreeTab messageTreeTab = new MessageTreeTab(); /** * Adds a tab to Spark */ private void addTabToSpark(){ // Get Workspace UI from SparkManager Workspace workspace = SparkManager.getWorkspace(); // Retrieve the Tab…
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
最近做了一个项目,要求找出二度人脉的一些关系,就好似新浪微博的“你可能感兴趣的人” 中,间接关注推荐:简单描述:即你关注的人中有N个人同时都关注了 XXX . 在程序的实现上,其实我们要找的是:若 User1 follow了10个人 {User3,User4,User5,... ,User12}记为集合UF1,那么 UF1中的这些人,他们也有follow的集合,分别是记为: UF3(User3 follow的人),UF4,UF5,...,UF12:而在这些集合肯定会有交集,而由最多集合求交产生的…
GraphX基于BSP模型,在Spark之上封装类似Pregel的接口,进行大规模同步全局的图计算,尤其是当用户进行多轮迭代时,基于Spark内存计算的优势尤为明显.…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…
快刀初试:Spark GraphX在淘宝的实践 作者:明风 (本文由团队中梧苇和我一起撰写,并由团队中的林岳,岩岫,世仪等多人Review,发表于程序员的8月刊,由于篇幅原因,略作删减,本文为完整版) 对于网络科学而言,世间万物都可以抽象成点,而事物之间的关系都可以抽象成边,并根据不同的应用场景,生成不同的网络,因此整个世界都可以用一个巨大的复杂网络来代表.有关复杂网络和图算法的研究,在最近的十几年取得了巨大的进展,并在多个领域有重要的应用. 作为最大的电商平台,淘宝上数亿买家和卖家,每天产生数…
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式2.1.2 GraphX 存储模式2.2 vertices.edges 以及 triplets2.2.1 vertices2.2.2 edges2.2.3 triplets2.3 图的构建2.3.1 构建图的方法2.3.2 构建图的过程2.4 计算模式2.4.1 BSP 计算模式2.4.2 图操作一…
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交网络.电子商务,地图等领域.对于图计算的两个核心问题:图存储模式和图计算模型,Spark GraphX给出了近乎完美的答案, 而Spark GraphX作为图计算领域的屠龙宝刀,对Pregel  API的支持更是让Spark GraphX如虎添翼.Spark GraphX可以轻而易举的完成基于度分布…
四两拨千斤:借助Spark GraphX将QQ千亿关系链计算提速20倍 时间 2016-07-22 16:57:00 炼数成金 相似文章 (5) 原文  http://www.dataguru.cn/article-9648-1.html 主题 Graphx Spark 腾讯QQ有着国内最大的关系链,而共同好友数,属于社交网络分析的基本指标之一,是其它复杂指标的基础.借助Spark GraphX,我们用寥寥100行核心代码,在高配置的TDW-Spark集群上,只花了2个半小时,便完成了原来需要2…
一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结果中出现频率最高的一个或多个人(频率这块没完成),即完成. 但如果有千万级别的用户,那在运算时,就肯定会把这些用户的follow 关系放到内存中,计算的时候依次查找:先说明下我没有明确的诊断对比,这样做的效果一定没 基于hadoop实现的好:只是自己,想用hadoop实现下,最近也在学:若有不足的地…
直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.graphx.util.CollectionUtil.CollectionHelper import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel…
一.使用graph做好友推荐 import org.apache.spark.graphx.{Edge, Graph, VertexId} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} //求共同好友 object CommendFriend { def main(args: Array[String]): Unit = { //创建入口 val conf: SparkConf…
一.简介 参考:https://www.cnblogs.com/yszd/p/10186556.html 二.代码实现 package big.data.analyse.graphx import org.apache.log4j.{Level, Logger} import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.apache.spark.sql.SparkSession class Vertex…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .GraphX介绍 1.1 GraphX应用背景 Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求. 众所周知·,社交网络中人与人之间有很多关系链,例如Twitter.Facebook.微博和微信等,这些都是大数据产生的地方都需要图计算,现在的图处理基本都是分布式的图处理,而并非单机处理.Spark G…
在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识.        这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识 第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消解 第一步,向量空间模型VSM …
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
一.图构建器 GraphX提供了几种从RDD或磁盘上的顶点和边的集合构建图形的方法.默认情况下,没有图构建器会重新划分图的边:相反,边保留在默认分区中.Graph.groupEdges要求对图进行重新分区,因为它假定相同的边将在同一分区上放置,因此在调用Graph.partitionBy之前必须要调用groupEdges. 源码如下: package org.apache.spark.graphx import org.apache.spark.SparkContext import org.a…
一.简介 参考博客:https://www.cnblogs.com/yszd/p/10186556.html 二.代码实现 package graphx import org.apache.log4j.{Level, Logger} import org.apache.spark.graphx.util.GraphGenerators import org.apache.spark.sql.SparkSession /** * Created by Administrator on 2019/1…
”云”或者’云滴‘是云模型的基本单元,所谓云是指在其论域上的一个分布,可以用联合概率的形式(x, u)来表示 云模型用三个数据来表示其特征 期望:云滴在论域空间分布的期望,一般用符号Εx表示. 熵:不确定程度,由离散程度和模糊程度共同决定,一般用En表示. 超熵: 用来度量熵的不确定性,既熵的熵,一般用符号He表示. 云有两种发生器:正向云发生器和逆向云发生器,分别用来生成足够的云滴和计算云数字特征(Ex, En,He). 正向云发生器: 1.生成以En为期望,以He^2为方差的正态随机数En’…
Spark+GraphX图 Q:什么是图?图的应用场景 A:图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种网状数据结构,表示为二元组:Gragh=(V,E),V\E分别是顶点和边的集合.图很好的表达了事物间的练习,常用于对事物之间的关系建模.常见应用场景有:在地图应用中寻找最短路径.社交网络关系.网页间超链接关系. ------------------------------------------ Q:有向图与无向图是什么? A:图的顶点间的连系即边是有向的,有向<A…
Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调优 Spark面试题(七)--Spark程序开发调优 Spark面试题(八)--Spark的Shuffle配置调优 GraphX 是新的图形和图像并行计算的Spark API.从整理上看,GraphX 通过引入 弹性分布式属性图(Resilient Distributed Property Grap…
----本节内容------- 1.流式处理系统背景 1.1 技术背景 1.2 Spark技术很火 2.流式处理技术介绍 2.1流式处理技术概念 2.2流式处理应用场景 2.3流式处理系统分类 3.流式处理技术关键技术 3.1流式处理系统管道构建 3.2流式处理系统关键技术 3.3用户行为分析系统介绍 4.问题答疑 5.参考资料 --------------------- 1.流式处理技术 1.1 技术背景 业务驱动技术发展,脱了了业务的技术,最多就是一个研究性的东西,流式处理技术的火爆源于业内…