瑞丽熵(renyi entropy)】的更多相关文章

在信息论中,Rényi熵是Hartley熵,Shannon熵,碰撞熵和最小熵的推广.熵能量化了系统的多样性,不确定性或随机性.Rényi熵以AlfrédRényi命名.在分形维数估计的背景下,Rényi熵构成了广义维数概念的基础. Rényi熵在生态学和统计学中是重要的多样性指标.Rényi熵在量子信息中也很重要,它可以用来衡量纠缠.在Heisenberg XY自旋链模型中,作为α的函数的Rényi熵可以由于它是关于模数群的特定子群的自守函数而被明确地计算.在理论计算机科学中,最小熵用于随机抽取…
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max…
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用于衡量两个概率分布之间的差异. 对于两个概率分布和 ,其相对熵的计算公式为: 注意:由于 和 在公式中的地位不是相等的,所以. 相对熵的特点,是只有 时,其值为0.若 和 略有差异,其值就会大于0. 相对熵…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们…
此文不对理论做相关阐述,仅涉及代码实现: 1.熵计算公式: P为正例,Q为反例 Entropy(S)   = PLog2(P) - QLog2(Q); 2.信息增量计算: Gain(S,Sv) = Entropy(S) - (|Sv|/|S|)ΣEntropy(Sv); 举例: 转化数据输入: 5 14 Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rai…
图像熵计算 真是为了一个简单的基础概念弄的心力交瘁,请教了一下师姐,但是并没有真的理解,师弟我太笨呀~~所以,我又查熵的中文含义和相关的出处!共勉吧~~ 1.信息熵: 利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量).自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量.一条信息的信息量和它的不确定性有着直接的关系.所发出的消息不同,它们所含有的信息量也就不同.任何一个消息的自信息量都代表不了信源所包含的平均自信息量.不能作为整个信源的信息测度,因此定义自信息量的数学期…
也可以看百度科 Linux内核采用熵来描述数据的随机性.熵(entropy)是描述系统混乱无序程度的物理量,一个系统的熵越大则说明该系统的有序性越差,即不确定性越大.在信息学中,熵被用来表征一个符号或系统的不确定性,熵越大,表明系统所含有用信息量越少,不确定度越大. 计算机本身是可预测的系统,因此,用计算机算法不可能产生真正的随机数.但是机器的环境中充满了各种各样的噪声,如硬件设备发生中断的时间,用户点击鼠标的时间间隔等是完全随机的,事先无法预测.Linux内核实现的随机数产生器正是利用系统中的…
在apache-tomcat官方文档:如何让tomcat启动更快里面提到了一些启动时的优化项,其中一项是关于随机数生成时,采用的“熵源”(entropy source)的策略. 他提到tomcat7的session id的生成主要通过java.security.SecureRandom生成随机数来实现,随机数算法使用的是”SHA1PRNG” private String secureRandomAlgorithm = "SHA1PRNG"; 在sun/oracle的jdk里,这个算法的…
0,熵的描述 熵(entropy)指的是体系的混沌的程度(可也理解为一个随机变量的不确定性),它在控制论.概率论.数论.天体物理.生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量.熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中.后来在,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入到信息论中来.----baidu 下面我们将从随机变量开始一步一步慢慢理解熵. 1,随机变量(rand…