灰度图像--图像分割 Sobel算子】的更多相关文章

学习DIP第44天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第47天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多详细请访问最新网站www.face2ai.com #开篇废话 依然是废话,这篇主要想对比下Sobel,Prewitt和Scharr算子的平滑能力,由于一阶微分对噪声响应强,进行微分之前进行降噪是非常必要的,这里我们进行的实验是,以lena图作为…
学习DIP第43天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第45天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第46天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 感受下markdown的写博客的感觉,好像在写程序一样,果然是程序员的好工具,不过开头怎么没有空格...一空格就自动变成代码了,这让我情何以堪,好吧,以后的文章开头不…
学习DIP第49天 转载请标明本文出处:*http://blog.csdn.net/tonyshengtan *,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 今天介绍二阶微分算子,二阶微分算子典型的是Laplace算子,LoG可以看成是一个高斯模板的拉普拉斯变换,但是也可以从根源上推导出LoG算子,而后面要介绍的DoG…
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 废话开始,今天介绍OTSU算法,本算法比前面给出的算法更能够给出数学上的最佳阈值,不需要任何输入附加参数.与同样不需要输入附加参数的迭代均值和均值阈值来比较…
学习DIP第36天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备. 2.效果 在我们的车牌定位中的第一步就是高斯模糊处理. 图1 高斯模糊效果 3.理论 详细说明可以看这篇:阮一峰讲高斯模糊. 高斯模糊是非常有名的一种图像处理技术.顾名思义,其一般应用是将图像变得模糊,但同时高斯模糊也应用在图像的预处理阶段.理解高斯模糊前,先看一下平均模糊算法.平均模糊的算法非…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们将一起学习Ope…
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na…
1. 形式 Gy 上下颠倒的 (*A表示卷积图像,忽略先): 看得出来,sobel算子感觉并不统一,特别是方向,我们知道matlab的图像格式是,x轴从左到右,y轴从上到下,原点在左上角. 所以,第二种sobel算子更和我们的心意. 2.计算: 在计算时,图像经过处理得到梯度图像,像素的灰度值公式是 , 人们为了方便改为 , 如果G的值大于某阈值,可以认为这个点就是边缘像素点. 梯度的方向是 所以,我们通过将横纵两个方向的sobel算子对图像处理之后,得到图像的梯度图像,图像的灰度是梯度的幅值,…
sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去和原始图片作卷积,分别得到横向G(x)和纵向G(y)的梯度值,如果梯度值大于某一个阈值,则认为该点为边缘点 图1:卷积矩阵 图2:卷积运算 事实上卷积矩阵也可以由两个一维矩阵卷积而成,在opencv源码中就是用两个一维矩阵卷积生成一个卷积矩阵: 图3:由两个一维矩阵卷积生成的矩阵 static vo…
#1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2,边缘.边界和sobel算子 这个可以自己去google或者百度找定义,边缘和边界不一样,两者没有必然联系也并非毫无联系.因为现实世界的三维空间映射到图像显示的二维空间中会丢失很多信息,也会添进来一部分类似光照.场景等的干扰,所以并不能完全给边缘和边界的关系下一个定义.对图像而言,我们一般是要找出它的…
彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用. 在数字图像处理中, 有一种基本的处理方法:线性滤波. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元素, 假设我们平面的分辨率是 1024*768, 那么对应的大矩阵的行数= 1024, 列数=768. 用于滤波的是一个滤波器小矩阵(也叫卷…
边缘是图像最基本的特征,其在计算机视觉.图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段. 1.何为“图像边缘”? 在图像中,“边缘”指的是临界的意思.一幅图像的“临界”表示为图像上亮度显著变化的地方,边缘指的是一个区域的结束,也是另一个区域的开始.“边缘点”指的是图像中具有坐标[x,y],且处在强度显著变化的位置上的点. 2.如何表示边缘检测? 在数学上,用导数来表示改变的快慢.基于此,有许多方法用于边缘检测,他们绝大部分可以划…
幻灯片1 Sobel算子 幻灯片2 一.Sobel边缘检测算子 l 在讨论边缘算子之前,首先给出一些术语的定义: l (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像. l (2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点. l (3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角. 幻灯片3 二.Sobel算子的基本原理 l Sobel算子是一阶导数的边缘检测算子,在算法实现过程中,通过3×3模…
本来想说很多目前对于 Sobel 算子的认识,但最终还是觉得对于其掌握程度太低,没有一个系统的理解,远不足以写博客,但为了12月不至于零输出,还是决定把自己学习过程中找到的相关资料进行分享. 等到一月底时间充裕的时候再来完成本文. 资料: https://www.cnblogs.com/freeblues/p/5738987.html ——彻底理解数字图像处理中的卷积 - 以 Sobel 算子为例 http://blog.sciencenet.cn/blog-425437-776050.html…
一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Opencv中Sobel函数使用扩展的Sobel算子,来计算一阶.二阶.三阶或混合图像差分. CV_EXPORTS_W , , int borderType=BORDER_DEFAULT ); 第一个参数,InputArra…
1.cv2.Sobel(src, ddepth, dx, dy, ksize)  进行sobel算子计算 参数说明:src表示当前图片,ddepth表示图片深度,这里使用cv2.CV_64F使得结果可以是负值, dx表示x轴方向,dy表示y轴方向, ksize表示移动方框的大小 2.cv2.convertScalerAbs(src)  将像素点进行绝对值计算 参数说明: src表示当前图片 sobel算子:分为x轴方向和y轴方向上的,x轴方向上的算子如图中的Gx,将sober算子在图中进行平移,…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("test.jpg"); Mat dst, gray,grad_x, gray_y,abs_grad_x,abs_grad_y; //转成灰度图 cvtColor(src, gray…
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值:矩阵数据类型进行转化. 完整代码: import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1…
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1[] = "window1"; char win2[] = "window2"; char win3[] = "window3"; Mat img1, img2, img3…
1.canny算子 Canny边缘检测算子是John F.Canny于 1986 年开发出来的一个多级边缘检测算法.更为重要的是 Canny 创立了边缘检测计算理论(Computational theory ofedge detection),解释了这项技术是如何工作的.Canny边缘检测算法以Canny的名字命名,被很多人推崇为当今最优的边缘检测的算法. 其中,Canny 的目标是找到一个最优的边缘检测算法,让我们看一下最优边缘检测的三个主要评价标准: 1.低错误率: 标识出尽可能多的实际边缘…
sobel算子 - sophia_hxw - 博客园http://www.cnblogs.com/sophia-hxw/p/6088035.html #1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2,边缘.边界和sobel算子 这个可以自己去google或者百度找定义,边缘和边界不一样,两者没有必然联系也并非毫无联系.因为现实世界的三维空间映射到图…
转自:http://blog.csdn.net/yanmy2012/article/details/8110316 索贝尔算子(Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量 Sobel卷积因子为: 该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值.如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的…
前言: Canny边缘检测使用了Sobel算子,计算dx和dy两个方向,对于特定方向的边缘检测,可以作少量修改. 代码: 计算特定方向上的边缘 void CannyOrient( cv::Mat &_src, cv::Mat &_dst, cv::Point2f &seed, double low_thresh, double high_thresh, int aperture_size, bool L2gradient ) { low_thresh = 0; high_thres…
Sobel 算子是一个离散的一阶微分算子,用来计算图像灰度函数的近似梯度. 在空间域上Sobel算子很容易实现,执行速度快,对部分噪声具有平滑作用,还能够提供较为精确的边缘方向信息,缺点是边缘定位精度不够高.边缘是指一个物体与另一个物体的分界处,一般边缘内外处都会有灰度值上的差异,Sobel算子就是通过像素点空间邻域内上下,左右相邻点的灰度加权运算,求取物体边缘. 经典Sobel的卷积因子为: 对于待检测边缘的图像I,分别在水平(X)方向和垂直方向(Y)方向求导,方法是分别图像I与卷积核Gx和G…
卷积应用-图像边缘提取 卷积应用-图像边缘提取 边缘是什么 – 是像素值发生跃迁的地方,是图像的显著特征之一, 在图像特征提取.对象检测.模式识别等方面都有重要的作用. 如何捕捉/提取边缘 – 对图像求它的一阶导数 - delta = f(x) – f(x-), delta越大,说明像素在X方向变化越大,边缘信号越强 Sobel算子 是离散微分算子(discrete differentiation operator), 用来计算图像灰度的近似梯度Soble算子功能集合高斯平滑和微分求导 又被称为…