1 redis的事务(pipeline)测试 Redis本身对数据进行操作,单条命令是原子性的,但事务不保证原子性,且没有回滚.事务中任何命令执行失败,其余的命令仍会被执行,将Redis的多个操作放到一起执行,要成功多成功,如果失败了,可以把整个操作放弃,可以实现类似事物的功能.redis事务包含三个阶段:开始事务,命令入队,执行事务.redis的分片副本集集群不支持pipeline,redis只支持单机版的事务(pipeline),Redis的主从复制也支持pipeline(目前一些公司就是这…
1.两种方式管理偏移量并将偏移量写入redis (1)第一种:rdd的形式 一般是使用这种直连的方式,但其缺点是没法调用一些更加高级的api,如窗口操作.如果想更加精确的控制偏移量,就使用这种方式 代码如下 KafkaStreamingWordCountManageOffsetRddApi package com._51doit.spark13 import com._51doit.utils.JedisConnectionPool import org.apache.kafka.clients…
1 新建一个maven项目 打印根目录下的文件的名字 添加pom依赖 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=…
以下如有雷同,不胜荣幸 * --- 示例代码!!!!!----*/ #! /usr/bin/env python # _*_  coding:utf-8 _*_ import socket import sys PASSWORD_DIC=['redis','root','oracle','password','p@aaw0rd','abc123!','123456','admin'] def check(ip, port, timeout):     try:         socket.se…
欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的管理,集群中计算资源的管理与分配. Yarn为应用程序开发提供了比较好的实现标准,Spark支持Yarn部署,本文将就Spark如何实现在Yarn平台上的部署作比较详尽的分析. Spark Standalone部署模式回顾 上图是Spark Standalone Cluster中计算模块的简要示意,…
确保HADOOP_CONF_DIR或者YARN_CONF_DIR指向hadoop集群配置文件目录.这些配置用来写数据到hdfs以及连接yarn ResourceManager.(在$SPARK_HOME/conf/spark-env.sh中,添加export HADOOP_CONF_DIR=/home/koushengrui/app/hadoop/etc/hadoop).The configuration contained in this directory will be distribut…
04.Spark Standalone集群搭建 4.1 集群概述 独立模式是Spark集群模式之一,需要在多台节点上安装spark软件包,并分别启动master节点和worker节点.master节点是管理节点,负责和各worker节点通信,完成worker的注册与注销.worker节点是任务执行节点,通过worker节点孵化出执行器子进程来执行任务. 4.2 集群规划 这里使用4台主机部署Spark集群,主机名称分别是s101.s102.s103和s104. s101 #Master节点 s1…
本文以Spark执行模式中最常见的集群模式为例,详细的描述一下Spark程序的生命周期(YARN作为集群管理器). 1.集群节点初始化 集群刚初始化的时候,或者之前的Spark任务完成之后,此时集群中的节点都处于空闲状态,每个服务器(节点)上,只有YARN的进程在运行(环境进程不在此考虑范围内),集群状态如下所示: 每个节点服务器上都有一个YARN的管理器进程在检测着服务器的状态.蓝色的是YARN主节点. 2.创建Spark驱动器进程 如上图所示,客户端将程序包(jar包或代码库)提交到集群管理…
转自: http://www.csdn.net/article/2015-06-21/2825011 摘要:眼下大数据领域最热门的词汇之一便是流计算了,而其中最耀眼的无疑是来自Spark社区的SparkStreaming项目. 对于流计算而言,最核心的特点毫无疑问就是它对低时的需求,但这也带来了相关的数据可靠性问题. 2Driver HA 由于流计算系统是长期运行.且不断有数据流入,因此其Spark守护进程(Driver)的可靠性至关重要,它决定了Streaming程序能否一直正确地运行下去.…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduce或者spark的driver class中声明如下代码 job.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, tablename); 随后mapreduce在mapper或者reducer中直接context写入即可,而spark则是…