裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using namespace std; const int maxn = 2000000 + 3; long long f[maxn], sum[maxn], a, b, c; int n, q[maxn]; inline double re_x(int i){ return sum[i]; }; inline double…
考虑最普通的\(dp\) \[dp[i]=max(dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c \] qwq 由于演算纸扔掉了 qwq 所以直接给出最后的柿子 设\(f[x]=dp[x]+a*sum[x]^2\) \[\frac{f[j]-f[k]}{s[j]-s[k]}>2*a*sum[i]+b \] 所以直接维护一个上凸壳就好了啦 #include<iostream> #include<cstdio> #include<…
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f_i\)为安排前\(i\)个人的最大值\((f_0=0)\) \(f_i=\max\limits_{j=0}^{i-1}\{f_j+a(x_i-x_j)^2+b(x_i-x_j)+c\}\) \(\quad=\max\limits_{j=0}^{i-1}\{f_j-2ax_ix_j+ax_j^2-b…
洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 \((i, i + 1, ..., i + k)\) 的序列. 编号为 \(i\) 的士兵的初始战斗力为 \(x_i\) ,一支特别行动队的初始战斗力 \(x\) 为队内 士兵初始战斗力之和,即 \(x = x_i + x_{i+1} + ... + x_{i+k…
1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Status][Discuss] Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT dp[i]=dp[j]+a*x*x+b*x+cx=sum[i]-sum[j] 证明单调性假设对于i点 k<j且j的决策…
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜率优化的式子上单调队列就好了 时间/空间复杂度:\(O(n)\) #include<cstdio> #define sid 1000500 #define ri register int #define ll long long #define dd double using namespace…
1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Status][Discuss] Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT f[i]=max{f[j]+...} 随便一化就好了 (a*(s[k]*s[k]-s[j]*s[j])+f[k]-f[…
1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT Source dp方程: 如果j>k且j比k更优 #include<map> #include<cmath> #include<queue> #include<cstdio>…
题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * s^2 + b * s + c\)(a,b,c为常数) 求最大实际战斗力 题解思路 \( dp[i] = max(dp[j) + a * (s[i] - s[j]) ^ 2 + b * (s[i] - s[j]) + c \) 然后斜率优化,单调队列维护 代码 #include <cstdio>…
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j]^2-b*sum[j])-(2a*sum[j]*sum[i]))+(a*sum[i]^2+b*sum[i]+c)$ 我们可以把每个决策映射到平面上的一个点 其中坐标$x=(a*sum[j]^2-b*sum[j])$代表此决策的固定价值(与转移到哪无关) 坐标$y=(-2a*sum[j])$代表此决…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; ; ll n,a,b,c,s[maxn],q[maxn],f[max…
题目链接 斜率优化的经典模型,将序列分成若干段,每段有一个权值计算方法,求权值和最大/小 暴力的dp $O(n^{2})$ dp[i]为1-i的序列的最优解.sum[i]为前缀和,$D(i)=ax^{2}+bx+c$ 转移为$dp[i]=\max_{j=0}^{i-1}dp[j]+D(sum[i]-sum[j])$ 然后叒是经典的推公式: 设$k<j<i$,且i从j转移比i从k转移更优. $dp[j]+a(sum[i]-sum[j])^{2}-b(sum[i]-sum[j])+c\geq dp…
传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c>dp[k]+a*(sum[i]-sum[k])^2+b*(sum[i]-sum[k])+c$$ 展开,并消去同类项之后得$$dp[j]-2*a*sum[i]*sum[j]+a*sum[j]^2-b*sum[j]>dp[k]-2…
想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉比较好写的一种(因为没写过维护凸包),另一种是维护(上)凸包的做法,本质一样?推荐http://www.mamicode.com/info-detail-345781.html. 网上的大多数解法: DP:f[i]=max(f[j]+a*(sum[i]-sum[j])^2+b(sum[i]-sum[…
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_j-s_j+h_j^2\),横坐标不单调可以\(CDQ\)分治或\(Splay\).具体见这里. 然后差不多就是个模板了. 注意算斜率乘1.0啊mmp. //645ms 8.14MB #include <cstdio> #include <cctype> #include <cs…
Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i, i + 1, ..., i + k)(i,i+1,...,i+k) 的序列. 编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内 士兵初始战斗力之和,即 x = x_i + x_{i+1} + ... + x_{i+k}x=xi​+xi+1​+...+xi+k​ .…
推出来式子以后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> #include<cmath> #define inf 0x3f3f3f3f #define LL long long int using namespace std; ; inline LL rd(){ LL x=;; ;…
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$ $p_i$是单调的,于是可以单调队列,当遍历完一个子树的时候,必须复原单调队列到进入这棵子树前的样子,这个用可持久化线段树维护可持久化数组显然可做... 当然有更聪明的方法. 单调队列队头出去的时候实际上队列信息不会被覆盖,于是恢复左端点只要记录进入当前点前的左端点即可.…
解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) ) 其中min的后半部分,也就是dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) 计算了将j~i分为一组的花费(以及提前计算的受影响花费) 设f(j)=dp[…
题目背景 OL不在,Clao又在肝少*前线,他虽然觉得这个游戏的地图很烦,但是他认为地图的难度还是太低了,习习中作为策划还不够FM,于是他自己YY了一种新的地图和新的机制: 题目描述 整个地图呈树形结构,共有N+1 个节点,0 号节点为树的根节点,并且,与0 号节点相连的就只有1 号节点,除0 号节点外的所有节点上都会有一队战斗力为V_i的敌人存在: 指挥部设在0 号节点,玩家的操纵梯队只能出生在该节点,并且在进入地图时玩家将选择任意一个节点作为本次任务的终点,设为E ,玩家只需要将根节点到EE…
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 题目描述 有 \(N\) 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变.机器会把这 \(N\) 个任务分成若干批,每一批包含连续的若干个任务.从时刻 \(0\) 开始,任务被分批加工,执行第 \(i\) 个任务所需的时间是 \(T_i\).另外,在每批任务开始前,机器需要 \(S\)…
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f[k][j-1]+sum[i]*sum[i]-2sum[i]sum[k]+sum[k]*sum[k]\) \(-f[k][j-1]-sum[k]*sum[k]=-2sum[i]sum[k]-f[i][j]+sum[i]*sum[i]\) #include <cstdio> #include <…
应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set>…
传送门 没想到这种多个状态转移的还能用上斜率优化……学到了…… 首先我们可以发现,切的顺序对最终答案是没有影响的 比方说有一个序列$abc$,每一个字母都代表几个数字,那么先切$ab$再切$bc$,得分是$ab+bc+ac$,而如果先切$bc$再切$ab$,得分也是$ab+bc+ac$,不难看出得分是一样的 那么我们可以考虑一下转移方程$$dp[a][i]=max\{dp[a-1][j]+sum[j]*(sum[i]-sum[j])\}$$ 其中$a$表示切几刀,$sum$表示前缀和 然后发现空…
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最优解,得到的是一条直线,斜率已知: 然后找到最接近这个最优斜率的点作为答案: 同时发现斜率单调递增,所以可以用单调队列: 代码是惊人地短呢: 还有一个问题,就是下面这篇代码中注释掉的那句会WA,可是我觉得它不过是把下面一句展开了而已啊? 代码如下: #include<iostream> #incl…
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 + 123; long long s[maxn], f[maxn]; int l, n, q[maxn]; inline long long re_x(int i){ return s[i]; } inline long long re_y(int i){ return f[i] + (s[i] + l) *…
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(ans = a*(b+c) + b*c\) 如果先分割\(bc\)之间的话,\(ans=c*(a+b)+a*b\) 答案是一样的.(也可以理解成如果位置,两数相乘的次数是一定的) 那么得到这个结论之后 也就不难得出\(dp\)柿子了 \[dp[i][p]=max(dp[j][p-1]+(sum[i] +…
感觉和锯木厂那个题很类似的. 其实这个题还那个题唯一的区别就是\(dp\)转移式子中的\(f\)变成了\(g\) qwq不想多说了 直接看我的前一篇题解吧qwq #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<queue> #include<map> #include<…
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个段的分数的总和最大. [输入格式]  第1行:1个整数N (1 <= N <= 1000000). 第2行:3个整数a,b,c(-5<=a<=-1,|b|<=10000000,|c|<=10000000 下来N个整数,每个数的范围为[1,100]. [输出格式]      …
1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Status][Discuss] Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT Source [思路] 斜率优化. 设f[i]表示将前i个分组的最优值,则有转移方程式: f[i]=max{ f[j]…