通过训练多层神经网络可以将高维数据转换成低维数据,其中有对高维输入向量进行改造的网络层.梯度下降可以用来微调如自编码器网络的权重系数,但是对权重的初始化要求比较高.这里提出一种有效初始化权重的方法,允许自编码器学习低维数据,这种降维方式比PCA表现效果更好. 降维有利于高维数据的分类.可视化.通信和存储.简单而普遍使用的降维方法是PCA(主要成分分析)--首先寻找数据集中方差最大的几个方向,然后用数据点在方向上的坐标来表示这条数据.我们将PCA称作一种非线性生成方法,它使用适应性的.多层"编码&…
Deeplearning原文作者Hinton代码注解 Matlab示例代码为两部分,分别对应不同的论文: . Reducing the Dimensionality of data with neural networks ministdeepauto.m backprop.m rbmhidlinear.m . A fast learing algorithm for deep belief net mnistclassify.m backpropclassfy.m 其余部分代码通用. %%%%…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
别看本文没有几页纸,本着把经典的文多读几遍的想法,把它彩印出来看,没想到效果很好,比在屏幕上看着舒服.若用蓝色的笔圈出重点,这篇文章中几乎要全蓝.字字珠玑. Reducing the Dimensionality of Data with Neural Networks G.E. Hinton and R.R. Salakhutdinov  摘要 训练一个带有很小的中间层的多层神经网络,可以重构高维空间的输入向量,实现从高维数据到低维编码的效果.(原文为high-dimensional data…
原文链接:http://www.ncbi.nlm.nih.gov/pubmed/16873662/ G. E. Hinton* and R. R. Salakhutdinov .   Science. 2006 Jul 28;313(5786):504-7. Abstract High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a…
这篇paper来做什么的? 用神经网络来降维.之前降维用的方法是主成分分析法PCA,找到数据集中最大方差方向.(附:降维有助于分类.可视化.交流和高维信号的存储) 这篇paper提出了一种非线性的PCA 的推广,通过一个小的中间层来重构高维输入向量,训练一个多层神经网络.利用一个自适应的.多层的编码网络(Deep autoencoder networks),达到降维的目的. 这种降维方法,比主成分分析法PCA(principal compenent analysis)效果要好的多. 在这两种网络…
2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心训练算法,为训练深度神经网络带来了希望.如果说Hinton 2006年发表在<Science>杂志上的论文[1]只是在学术界掀起了对深度学习的研究热潮,那么近年来各大巨头公司争相跟进,将顶级人才从学术界争抢到工业界,则标志着深度学习真正进入了实用阶段,将对一系列产品和服务产生深远影响,成为它们背后…
****************内容加密中********************…
在这篇论文中,作者提出了一种更加通用的池化框架,以核函数的形式捕捉特征之间的高阶信息.同时也证明了使用无参数化的紧致清晰特征映射,以指定阶形式逼近核函数,例如高斯核函数.本文提出的核函数池化可以和CNN网络联合优化. Network Structure Overview Kernel Pooling Method The illustration of the tensor product A summary of pooling strategies Experiment Evaluation…
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 解决异构网络上的节点嵌入问题. 论文中指出了异构网络嵌入的两个关键问题: 在异构网络中,如何定义和建模节点邻域的概念? 如何优化嵌入模型,使得其能够有效的保留多种类型的节点和边的结构和语义信息. (2) 主要贡献 Contribution 1: 定义了异构网络表示学…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
FractalNet: Ultra-Deep Neural Networks without Residuals ICLR 2017 Gustav Larsson, Michael Maire, Gregory Shakhnarovich 文章提出了什么(What) ResNet提升了深度网络的表现,本文提出的分形网络也取得了优秀的表现,通过实验表示,残差结构对于深度网络来说不是必须的. ResNet缺乏正则方法,本文提出了drop-path,对子路径进行随机丢弃 为什么有效(Why) 分形网络…
论文标题:Siamese Neural Networks for One-shot Image Recognition 论文作者: Gregory Koch   Richard Zemel Ruslan Salakhutdinov 论文地址:https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf 声明:小编翻译论文仅为学习,如有侵权请联系小编删除博文,谢谢! 小编是一个机器学习初学者,打算认真研究论文,但是英文水平有限,所以论文翻译中用到了Goo…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…
6 Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks link:https://arxiv.org/abs/1908.01207 Abstract 本文提出了一种在嵌入空间中显示建模用户/项目的未来轨迹的模型JODIE.该模型基于RNN模型,用于学习用户和项目的嵌入轨迹.JODIE可以进行未来轨迹的预测.本文还提出了 t-Batch算法,利用该方法可以创建时间相同的batch,并使训练速度提高9倍.…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
论文原址:https://arxiv.org/abs/1409.1556 代码原址:https://github.com/machrisaa/tensorflow-vgg 摘要 本文主要分析卷积网络的深度对基于大数据集分类任务中准确率的影响,本文使用较小的卷积核(3x3), 应用至较深的网络中并进行评估,将网络中的深度增加至16至19层,可以有效改进分类效果. 介绍 卷积网络在大规模图片/视频分类任务中取得巨大成功的原因主要有,(1)大规模的图像数据,像ImageNet(2)高性能的计算资源(G…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类任务分离,并为每个任务单独学习一个分离的网络.分类网络识别与图片相关的标签,然后在每个识别的标签中进行二进制的分割.Decoupled网络可以基于图像级别标签学习分类网络,基于像素级别标签学习分割网络.该网络通过桥链接层获得类别明确的激活maps来减少分割的搜索空间.该文在少量训练数据的条件下仍优于…
论文原址:https://arxiv.org/abs/1707.02921 代码: https://github.com/LimBee/NTIRE2017 摘要 以DNN进行超分辨的研究比较流行,其中,残差学习较大的提高了性能.本文提出了增强的深度超分辨网络(EDST)其性能超过了当前超分辨最好的模型.本文模型性能的大幅度提升主要是移除卷积网络中不重要的模块进行优化得到的.本文模型可以在固定训练步骤的同时,进一步扩大模型的尺寸来提升模型性能.本文同时提出了一个多尺寸超分辨系统(MDSR)及训练方…
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices…
[pdf] [code] 句法控制释义网络 SCPNS  生成对抗样本 我们提出了句法控制意译网络(SCPNs),并利用它们来生成对抗性的例子.给定一个句子和一个目标语法形式(例如,一个选区解析),scpn经过训练,可以用所需的语法产生句子的释义.我们展示了为这个任务创建训练数据是可能的,首先在非常大的范围内进行反向翻译,然后使用解析器来标记在这个过程中自然发生的语法转换.这样的数据允许我们用额外的输入训练一个神经编码器解码模型来指定目标语法.自动化和人工评估的结合表明,与基准(非受控)释义系统…
这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位. 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全连接网络,并且使用了最大池化. RELU非线性层 传统的神经网络的输出包括$tanh$ 和 $ y = (1+e^{-x})^{-1}$,namely sigmoid. 在训练阶段的梯度下降的过程中, 饱和的非线性层比非饱和的非线性层下降得更慢. -- RELU 可以加快训练的速度,与饱和非线性函数相比达到相同…
论文地址:https://arxiv.org/abs/1707.06168 代码地址:https://github.com/yihui-he/channel-pruning 采用方法 这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速.主要方法有两点: (1)LASSO regression based channel selection. (2)least square reconstruction. 实现效果 VGG-16实现5x的加速,0.3%误差增加…
目录 Abstract 1 Introduction 2 Related Work 3 Binary Convolutional Neural Network 3.1 Binary-Weight-Networks 3.2 XNOR-Networks 4 Experiments 4.1 Efficiency Analysis 4.2 Image Classification 4.3 Ablation Studies 5 Conclusion 参考资料 论文地址:http://ai2-website…
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 本文原作者:G.E.Hinton* and R.S.Salakhutdionv 原文地址:http://www.cs.toronto.edu/~hinton/science.pdf 为了重构高维的输入向量,可以通过训练一个具有小的中间层的多层的神经网络,从而把高位数据转换成低维的代码.梯度下降法能够用于这…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN). 该方法把训练过程看作是有线性限制条件的最优化过程: 其中是一个隐含的类别分布,是CNN预测的类别分布.目标函数是KL-divergen…
Conditional Random Fields as Recurrent Neural Networks ICCV2015    cite237 1摘要: 像素级标注的重要性(语义分割 图像理解)-- 现在开始利用DL----但DL无法描述visual objects----本文引入新型的CNN,将CNN与CRF概率图模型结合---用高斯pairwise势函数定义的CRF作为RNN,记为CRF-RNN----将其作为CNN的一部分,使得深度模型同时具有CNN和CRF的特性,同时本文算法完美结…
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控.本文从该问题出发,设计了一种有偏向的随机游走策略,使得随机游走可以在DFS和BFS两种极端搜索方式中取得平衡. (2) 主要贡献 Contribution: 本篇论文主要的创新点在于改进了随机游走的策略,定义了两个参数p和q,使得随机游走在BFS…