深度优先遍历和广度优先遍历 什么是深度优先和广度优先 其实简单来说 深度优先就是自上而下的遍历搜索 广度优先则是逐层遍历, 如下图所示 1.深度优先 2.广度优先 两者的区别 对于算法来说 无非就是时间换空间 空间换时间 深度优先不需要记住所有的节点, 所以占用空间小, 而广度优先需要先记录所有的节点占用空间大 深度优先有回溯的操作(没有路走了需要回头)所以相对而言时间会长一点 深度优先采用的是堆栈的形式, 即先进后出广度优先则采用的是队列的形式, 即先进先出 具体代码 const data =…
深度优先遍历 and 广度优先遍历 遍历在前端的应用场景不多,多数是处理DOM节点数或者 深拷贝.下面笔者以深拷贝为例,简单说明一些这两种遍历.…
深度优先与广度优先的定义 首先我们先要知道什么是深度优先什么是广度优先. 深度优先遍历是指从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续找它的下一个顶点进行访问.重复此步骤,直至所有结点都被访问完为止. 广度优先遍历是从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点所有未被访问的邻结点,访问完后再访问这些结点中第一个邻结点的所有结点,重复此方法,直到所有结点都被访问完为止. 代码实现 以下代码针对树的遍历实现,可能根据实际情…
import java.util.ArrayDeque; public class BinaryTree { static class TreeNode{ int value; TreeNode left; TreeNode right; public TreeNode(int value){ this.value=value; } } TreeNode root; public BinaryTree(int[] array){ root=makeBinaryTreeByArray(array,…
二叉树的创建代码==>C++ 创建和遍历二叉树 深度优先遍历:是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. //深度优先遍历二叉树void depthFirstSearch(Tree root){ stack<Node *> nodeStack; //使用C++的STL标准模板库 nodeStack.push(root); Node *node; while(!nodeStack.empty()){ node = nodeStack.top(); printf(format, n…
图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用邻接矩阵方式存储图.忘见谅. 图的遍历 1)深度优先遍历(Depth_First_Search,DFS) 从图中某个顶点 v 出发,访问此顶点,然后从 v 的未被访问的邻接点出发深度优先遍历图,直至图中所有和 v 有路径相通的顶点都被访问到.--------递归思想 2)广度优先遍历(Breadth…
数据结构可以说是编程的内功心法,掌握好数据结构真的非常重要.目前基本上流行的数据结构都是c和c++版本的,我最近在学习python,尝试着用python实现了二叉树的基本操作.写下一篇博文,总结一下,希望能够对其他好伙伴带来一点借鉴价值~~ 温馨提示:学习算法要先懂思想,后学代码.思想学会才是自己的.背下来代码,容易忘. 代码捉襟见肘,欢迎批评指正 ^.^先谈一下二叉树:二叉树是常用的存储数据的方式.除了根节点之外,每个节点都有一个父节点,最多有两个子节点,左孩子和右孩子对于二叉树有如下操作:…
深度优先搜索算法(Depth First Search),是搜索算法的一种.是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点.这一过程一直进行到已发现从源节点可达的所有节点为止. 如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止. 如右图所示的二叉树: A 是第一个访问的,然后顺序是 B.D,然后是 E.接着再是 C.F.G. 那么,怎么样才能来保证这个访问的顺序…
前面我们介绍了队列.堆栈.链表,你亲自动手实践了吗?今天我们来到了树的部分,树在数据结构中是非常重要的一部分,树的应用有很多很多,树的种类也有很多很多,今天我们就先来创建一个普通的树.其他各种各样的树将来我将会一一为大家介绍,记得关注我的文章哦~ 首先,树的形状就是类似这个样子的: 它最顶上面的点叫做树的根节点,一棵树也只能有一个根节点,在节点下面可以有多个子节点,子节点的数量,我们这里不做要求,而没有子节点的节点叫做叶子节点. 好,关于树的基本概念就介绍到这里了,话多千遍不如动手做一遍,接下来…
/* 首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点 为起始点,进行深度优先.广度优先搜索遍历,并输出遍历的结果. */ #include <stdlib.h> #include <iostream> #define MVNum 100 //最大的顶点数 using namespace std; /*——————图的邻接表存储表示——————*/ //边的结点表-在顶点表后面 typedef struct ArcNode { int adjvex; //邻接点…